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GENERAL INTRODUCTION

A previous study (ref. 1) considered means for predicting the influence
of configuration changes on the riding and handling qualities of a light
aircraft. A reader of that study will note that the values of many
significant parameters cannot be estimated with great precision despite
the fact that the entire analysis assumes only very small perturbations
from equilibrium. Flight testing is therefore necessary to establish the
validity of the analysis and to determine the riding and handling qualities
for farger excursions from equilibrium. Conceivably, flight testing could
also prove useful in developing improved parameter prediction techniques
by helping to establish the correct parameter values for a given configuration.
To serve this latter function, however, the flight data must be taken
as accurately as possible then interpreted consistently and correctly.

Flight testing is here regarded by the authors as the terminal portion
of the complete riding and handling qualities design task. For this reason
the present work was developed as a supplement to the previous study. To
serve this function, the work employs a similar approach and may therefore
be somewhat more analysis-oriented than is usual in discussions of stability
and control flight testing. This emphasis, however, seems consistent with
the finding that the parameter extraction procedure used to operate on
accurately measured data is far more significant than the manner in which
the pilot performs the test.

Consistent with the plan of the previous study, the present work gives
a review of methods found in the literature for extracting both static
stability derivatives and dynamic stability derivatives from flight data.
No discussion is presented of methods for establishing the compliance with
the FAR's or Military Specifications on Iight aircraft handling. These
requirements are discussed in the previous study in terms of suitable
values for the appropriate stability derivatives.

Following this portion of the review, there is a brief discussion of
the instrumentation and instrument installation techniques needed to procure
the data from which the stability derivatives can be extracted. The
pifoting procedures found to assist the data reduction are also indicated.

The next section treats In some detail a very sophisticated method for
extracting stability derivatives from flight data which has been under
development by the National Aeronautics and Space Administration for a
number of years. This method takes advantage of modern computer technology
to obtain a2 high degree of precision at reasonable cost. The technique
includes a provision for removing certain types of noise from the signals.
It is specially adapted here for use with light aircraft.

Finally, it may be noted that the previous study provided computer
programs for calculating the frequency and damping ratio of an aircraft's
oscillatory modes and the time constants of its aperlodic modes if one



has the values of the stability derivatives in the transfer function. Another
program for calculating the time hisfories of fthe various motions, given the
frequencies, damping ratios, time constants and fransfer functlion numerators,
was also provided. For the present study, the computerization has been
extended to the calculation of predicted values for the stability derivatives
given the aircraft geometry. The methods upon which the computer programs

are based were detailed In the previocus study.

In addition to making the prediction of light aircraft motions now
entirely a mechanical task, the new programs simplify the task of extracting
the stability derivatives from flight motions. The NASA procedure mentioned
above seems to be locally convergent. Thus, initial values for the stfability
derivatives not too far from their correct values are necessary 1o insure
convergence. These are provided by the new programs. They are described
in detail in Appendix B.

The reader will observe that the mathematical basis of the method recom-
mended for extraction of stability derivatives from measurements of aircraft
fiight motions is not elementary. This is perhaps unforftunate because this
study is intended for use by engineers whose preparation may not have included
instruction in relatively complex numerical computation procedures or the
mathematical theory associated with fitting a set of equations with undeter-
mined coefficients to experimental data, particulariy where the number of
undetermined coefficients exceeds the number of independent equations. Two
factors led the authors to persist In this choice despite the obvious
obstacle. The first was their conviction that even with the best methods
and instrumentation available it is difficult to extract derivative values
that are accurate and reliable. Inferior data and data reduction techniques
are often not worth the effort expended since the results obtained with them
usually fail to offer a reliable standard against which to compare theoretical
predictions. Anything less than a high level effort is probably best left
undone,

The second reason the recommended technique was pursued was that it has
been so programmed that l|ittle mathematical sophistication is required to use
it. Some consideration of the physics invoived, however, is needed to obtain
reliable results. The user must appreciate the fact that a maneuver which
does not excite a particular motion strongly is not very suitable for extract-
ing derivative values associated with that motion. For example, an aileron
pulse is less useful for finding such derivatives as Ly, Np, and Ng than is
a rudder pulse. Also, a short flight record is Inappropriate for extracting
the derivatives which are dominant in the phugoid mode. Once these factors
are recognized along with the deleterious influence of noise, phase shifts,
lack of resolution, and error in the flight records it becomes a fairly
mechanical procedure to extract reliable values of the stability derivatives.
The necessary steps are related in detail. For someone inferested in examin-
ing the rigor of the procedure, sufficient detail is provided along with
pertinent references so that he can reach a judgment on this point.

The reader will also note that most of the flight criteria usually taken
to be indicative of light aircraft handling qualities are not discussed at
all. The values of parameters such as the variation of stick force with
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speed, while important in helping a pilot evaluate the handling character-
istics of an aircraft offer [ittle opportunity to extract information on the
precise influence of geometric or inertial changes since equlvalent expres-
sions involve a combination of several of the usual stability derivatives.
Because the ultimate purpose of the present work is to improve the ease and
accuracy with which the light aircraft design process is carried out, it was
felt that only those procedures which offered a resonable prospect of serving
this purpose effectively should be discussed at this time. It Is hoped that
the following review and analysis Is consistent with this aim.






LITERATURE REVIEW —

TECHNIQUES FOR EXTRACTING STABILITY

DERIVATIVES FROM FLIGHT TEST DATA



INTRODUCTION

Interest in obtalning values of the stability derivatives by testing
the aircraft in actual flight was evident as early as 1925, By that time
both the Aeronautical Research Committee and the National Committee for
Aeronautics had begun to conduct such programs., Because riding and handling
quality requirements are constantly growing more stringent and because the
costs of conducting extensive development programs are steadily rising,
there has been a mounting desire to improve the accuracy of analytical
predictions of the motion of an aircrafft in response to a given control
input. Once the stability and aerodynamic parametfers are exfracted from
actual flight data, the parameter prediction, such as described in
reference 2, can then either be verified or modified to give estimates
closer to the flight values.

The major difficulty in finding the longitudinal (or lateral) stability
derivatives is that only three differential equations must be solved for
ten or twelve unknowns; this probliem exists even after the equations have
been linearized.* In addition there Is the problem of noise in the flight
data. Stability derivatives can never be any more accurate than the
flight records from which they are taken. Thus, improvements in the technique
used to solve for the stability derivatives become Important only after good
flight records have been secured.

In the last thirty years, many techniques to extract these derivatives
have been employed, scmetimes with excellent results. The general reliability
of the techniques, however, could never be convincingly demonstrated. With
the advent of transonic and supersonic aircraft and missiles and their
stability and control problems coupled with the difficulty of wind tunnel
measurement in these flow regimes, the availability of stability derivatives
derived from flight data assumed a heightened Importance. Fortunately, the
concurrent development of modern high speed computers has made possible the
development of more rigorous techniques which heretofore were prohibitively
complex because of the many involved mathematical computations required.

The |iterature review which follows discusses some of the more important
of these developments., Although several important references may have been
omitted, it is felt that a sufficient number have been included To insure
thoroughness.

* The linearized equations of longltudinal and lateral motion with

the dimensional stability derivatives are given on pages 53 and 39 respec-
tively. The derivation of these equations, as well as the appropriate
transfer functions, can be found in reference 1.



EARLY METHODS

Prior to the 1940's dynamic stability tests were concerned chiefly with
determining the damping and frequency of aircraft oscillation. NACA Report
442 (ref. 3), a 1932 study by Soule and Wheatley, compares the theoretical
and measured longitudinal stability characteristics of an airplane. The
linearized longitudinal equations of motion were used to obtain the
longitudinal characteristic equation in terms of the dimensional stability
derivatives. Approximate factorization of the biquadratic* was used to
obtain two quadratic equations: one of the quadratic equations represented
a short-period, heavily-damped oscillation; the second, a long-period,
tightly-damped oscillation. Soule and Wheatley argued that it 1s with the
lightly-damped oscillation that instability is most |ikely to occur;
therefore, it is usually necessary fo investigate only this phase of the
motion. From the long-period or phugoid quadratic, equations could be given
for both the period and damping coefficient of this mode in terms of the
dimensional stability derivatives. Using theoretical formulas to estimate
the dimensional stabitity derivatives, the theoretical damping coefficient
and period were obtained. Flight tests of a Doyle 0-2 alrplane were then
made to measure the period and damping experimentally. The pericd and
damping coefficient were determined by direct measurements of the
oscillation characteristics of u, w, and 8 both for power-off and power-on
conditions. The authors (ref. 3) decided that since u, w, and 8 are
interdependent variables, the periods of their variations with time are
necessarily the same, although they may not be In phase; thus, the period
and damping can be determined by studying the behavior of only one variable.
Airspeed was chosen as the one most convenient for study. The period of
oscillation was found by measuring the time interval between two consecutive
peaks of a time history of velocity. The damping coefficient was approximated
by estimating the decrease in velocity at two consecutive time history
peaks. Based on a comparison between the experimental values of both the
damping ccefficient and the period of oscillation it was concluded that
the theory of longitudinal stability based on the assumption of small
oscillations gives satisfactfory results for practical studies of longitudinal
stability.

In 1950 a survey of methods for determining stability parameters from
dynamic flight measurement was conducted (ref. 4). Most of the methods were
concerned with determining transfer function coefficients which are certain
combinations of stability derivatives. The transfer functions investigated
were derived from the linearized longitudinal pitching velocity and normal
acceleration equations. Experimentally-determined transfer functions were
compared with analytical models. A least squares procedure was applied to

* the fourth order characteristic equation of motion formed by expansion
of the denominator determinant common to all the longitudinal transfer
functions



obtain those values of the coefficients which cause the analytical model to
match the data most closely. The ratio of coefficient error to that of the
basic data was also obtained in this fashion. A number of methods for
obtaining good first approximations fo the coefficients, a step which aids
the convergence of the least square procedure, were discussed.

A more in-depth literature survey on dynamic stability and control
research was made in 1951 by Cornell Aeronautical Laboratory {(ref. 5), with
the following overall appraisal:

While it is by no means easy to evaluate overall progress
in the field of dynamic response measurements, the
following may be stated: Steady state oscillation and
transient input flight methods are now available which
yield equlivalent and repeatable response data. Methods
for reduction to the derivatives have been demonstrated
for both the longitudinal and lateral cases. For the
airplanes tested close agreement in all cases has not
been obtained between the measured responses and best
estimates based on static high speed wind tunnel data
and theory. Though there is no conclusive evidence

as to where the differences may lie, there is a growing
betief in the validity of the flight measurements.
Because of the additional processing involved in
extracting the derivatives from the measured response
data, it would be expected, and has generally been found
true, that larger discrepancies may exist between the
measured and estimated derivatives. While there is every
reason to believe that the approach is basically sound,
and generally applicable to projected performance ranges
and design parameters, further experience and refinement
are desirable.

As Cornell's survey notes, considerable interest was shown in the late
1940's in forced oscillation tests. |In this procedure the elevator is
oscillated steadily at some frequency and amplitude. After the alrcraft's
motion had become steady, the amplitude of the normal acceleration response
and its phase relationship to the forcing function is measured. The
elevator excitation is then changed to a new frequency and amplitude and
the response measured. Angle of attack and pitch angle responses can
also be determined at the same time. From these tests functional rela-
tionships such as the variation of normal acceleration amplitude and phase
angle per unit elevator deflection with frequency of oscillation can be
determined. This type of response presentation, or transfer function, is
commonly used in describing the dynamic properties of mechanical or
electrical systems, and is directly useful in the synthesis (and stability
determination) of a complete system in which the airplane is a component.
This was an attempt to rely heavily upon the mathematical and experimental
techniques of electrical engineers, which provided a well-developed basis
for the handling of dynamic phenomena., The flight time needed to measure



a complete frequency response, however, is excessive at least by modern
standards. For this reason Fourier transform techniques were developed

to determine the harmonic content of transient responses. The amplitude
and phase of the constituent sine waves in a normal acceleration time
history are compared fo the amplitude and phase of the constituent sine
waves in the elevator deflection time history to form the transfer function
as before. The entire transfer function, or frequency response, however,
can be obtained from the response to a single elevator pulse. This is a
substantial saving in flight time achieved at the cost of a substantial
increase in the complexity of data reduction.

To insure a minimum change in airspeed during flight testing, a
double pulse* was recommended. Excellent agreement is possible between
information faken on different flights and days if sound instrumentation,
carefully calibrated, is used. The author (ref. 5) felt that static,
full-scale wind tunnel tests would be invaluable for checking derivatives
from a dynamic test. Actual flight tests at a Mach number of 0.7 were
conducted, showing good results In extracting stability derivatives.

In 1951 Shinbrot (ref. 6) gave a method for the calculation of stability
coefficients, which are made up of stability derivatives, from transient
response data. The calculation of these coefficients of the linear
differential equations of motion was based on the classical least-squares
curve-fitting method.** The method is quite cumbersome fo use for some
inputs. The initial approximations to the coefficients were obtained by
a method (ref. 7) requiring graphical differentiation of time histories,
which, in some cases, may cause large errors,

The next year, Shinbrot delineated several methods for curve-fitting
a set of data by least squares in his investigation of curve-fitting
techniques (ref. 8). The pitching velocity was described as a sum of
exponentials with complex exponenfs. The coefficients of the exponentials,
as well as their exponents, were combinations of the stability derivatives
of the airplane; least squares was then applied to obtain coefficient
values, and an analytical relation between the coefficients and the
derivatives was used to evaluate the derivatives or combinations of
derivatives. Nine months later (ref. 9) he discussed some of the errors
encountered using least squares and other curve-fitting techniques. In
this report he warns against using only the pitching velocity excited by

* a rapid motion of the elevator first in one direction and then in the
other

¥*  Usually one wishes to determine several unknown parameters from only 3
equations of motion. By evaluating the three equations at a number of times,
one can form many equations in the unknown parameters. For example, suppose
U= Au + Bw + Cq and time histories are available for u, u, w, and q. Then
many equations in A, B, and C can be formed by evaluating the above equation
at many different points in ftime thus giving more equations than unknowns. A
least squares procedure can then readily be used to find the best values for
A, B, and C which satisfy the data set.



an elevator pulse to calculate all the derivatives in the pitching velocity
equation. No more should be expected from such an analysis than the period
and damping parameters.

In 1954 Shinbrot (ref. 10) developed a general theory of the so-called
"equations-of-motion'" methods* for the analysis of linear dynamical systems
and then extended it to apply to non-linear systems. A vartation of the
"Fourier transform" method for analysis of linear systems was combined
with the non-linear methods to produce an improved technique for obtaining
stability derivatives of both linear and non-linear systems. As the report
notes, one important advantage of the new method is that the dependency
on initial values of the derivatives, found in earlier methods, is
entirely eliminated. This advantage is of particular importance when
systems of higher order than the second are considered.

Twelve years after Shinbrot's method was published in TN 3288, Burns
(ref. 11) wrote of his experience with it in estimating stability derivatives.
Based on the flight testing of two aircraft, it was found that reliable
results were obtained only when the unknowns in each longitudinal or
lateral equation were reduced to two. Burns gave three recommendations
which he felt might be helpful in future flight fest programs: 1) tfo
evaluate control derivatives, the initial control input should be suffi-
ciently rapid for the effect of disturbances within the duration of the
control input to be relatively small; 2) to evaluate damping derivatives,
one cycle of the motion is sufficient; and 3) to evaluate normal force
derivatives, the acceleration equation shouid be used.

In 1951 Donegan and Pearson presented what was fermed a matrix method
for determining the longitudinal stability coefficients of an airplane.**
They first integrated the linearized longitudinal equations of motion so
that no derivative terms remained. They then integrated measured values
of the angle of attack, pitch angle, normal acceleration, and control
surface deflection angle numerically for different values of fime. By
substituting measurements into the integral equations, a system of
simultaneous equations in the unknown coefficients is creafed. These
unknown coefficients can then be found by solving the simultaneous equations.
Once the coefficients have been found, some of the stability derivatives
which make up the coefficients may be approximated by making certain
assumptions. An attractive feature of this method Is that infegrations
tend to smooth out noise. A method is also given to obfain the frequency
response of the airplane.

* Measured values of the dependent variables at various times are
substituted into the differential equations, the general forms of which are
assumed. For each time, 3 equations in the unknown parameters are generated.
The process is continued until sufficient equations are available to
overspecify the unknown paramefers.

**  first given In NACA TN-2370 which was later superseded by NACA TR-1070
(ref. 12)
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In 1954 Donegan followed the theme of the work in TR 1070 by presenting
three matrix methods for determining the longitudinal stability derivatives
from transient flight data (ref. 13). The methods differ in complexity with
the most general method requiring four measurements in time history form
and the least general method requiring only two time history measurements,
together with the assumptions that Cmy/Cm, = constant and Cmge = (2£/c)Clgg
The results of these methods depended in ?arge measure on accurate instrument
measurements and required considerable computation to yield adequate
engineering answers.

In 1955 Donegan et al. (ref. 14) obtained lateral stability derivatives
by curve-fitting forced oscillation responses with a vector representation
of the linearized lateral equations of motion. The dependent variabies
(B, ¢, etc.) of the equations were considered to be vectors of amp!itude
ratio R and phase angle $. By equating real and imaginary parts, the
thrée equations of lateral motion can be separated into six equations,

These six equations are then fitted to the flight data by a least squares
procedure. The coefficients evaluated by this means are combinations of
the stability derivatives.

In the early to mid-1950's several other notable reports treated the
extraction of stability derivatives. Reference 15 presents a method for
deriving time-response and frequency-response data for angle of attack and
normal accelerations at the €.g., when these data are measured at non-c.g.
locations and pitching velocity is not measured. The method appears
particularly applicable when insturments cannot be placed in the mos+
desirable locations,

In 1954 Sternfield (ref. 16) presented a vector method approach to the
analysis of the dynamic lateral stability of alrcraft, making possible a
physical visualization of the contribution of the various stability
derivatives and mass characteristics to the overall motion of the airplane.

Eggteston and Mathews also presented TR 1204 (ref. 17) in 1954
evaluating some of the methods previously published for determining transfer
functions and frequency response of aircraft from flight data. In general
these methods may be classed as: 1) analysis of the frequency response
resulting from a sinusoidal control surface input, 2) analysls. of the
frequency response by using Fourier transforms to convert the transient
response fo an arbitrary input into the frequency domain, and 3) analysis
of the transient through the use of least-squares solutions of the coeffi-
cients of an assumed equation (curve-fitting methods). The investigation
revealed that the curve-fitting methods (Donegan-Pearson and exponential-
approximation methods) appear to be less critical to Inputs having regions
of low harmonic content than Fourier methods and present the frequency
response as analytical transfer functions. Fourier methods indicate
characteristics of frequency response that may be missed in curve-fitting
methods because of the |imitations on the assumed form of the equations.
For manual calculations, the Donegan-Pearson method appears best suited
for highly damped systems In response to arbitrary inputs, and the Fourier
method offers comparabie results but requires lengthy calculations.



Wilkie (ref. 18) presents a statistical extraction method for aircraft
stability coefficients based on a maximum-1iklihood parameter-estimation
technique. In general no significant difference in extraction accuracy
was observed between the integral method of Shinbrot, +he statistical method,
and the derivative method, provided the various data required by each method
were available to equal precision.

An analysis of longitudinal response to unstable aircraft is glven In
reference 19. Methods of obtaining stability derivatives from flight records,
as well as possible improvement for the methods are given. Mention is made
of the fact that it may be advantageous to assume values of the least
important derivatives and then calculate the others by least squares.

[n 1959 another review of the activities in the field of aircraft
dynamic stability derivatives was undertaken (ref. 20). While the author
mentioned several common methods for analyzing full-scale flight data, the
major portion of the report was concerned with a detailed discussion of
t+he techniques used to obtain dynamic measurements in wind tunnels.
Reference 21 is also concerned with dynamic longitudinal measurements In
a wind tunnel. Procedures are given by which the longitudinal damping
derivative may be obtained in the wind tunnel.

12



MODERN ME THODS

A United States Air Force report by Rampy and Berry (ref. 22) treated
the determination of stability derivatives from flight test data by operation
analog matching. In conventional analog matching the aircraft equations
of motion are programmed on an analog computer to provide a mathematical
model of the aircraft against which to compare the motions recorded from
an actual flight test. Theoretical or wind tunne! values of the stability
derivatives are used as initial estimates of their flight values. These
and other basic variables (airspeed, moments of inertia, etc.) are then
"fed" into the computer as constants. The flight test inputs (e.g., control
surface deflections) are reproduced on function generating equipment for
introduction into the mathematical model. The computer calculates responses
to these inputs and records them on a strip chart or oscilloscope for
comparison with actual flight test time histories. Differences between
the computer and aircraft responses are attributed to errors in the estimated
values of the stability derivatives. The values of the stability
derivatives used in the computer are then changed using a trial and error
process until the computed responses match the flight records. The
stability derivative values producing this match are then noted.

The process is very time-consuming because it may be necessary to
match a considerable number of time histories to obtain generally valid
values and the cataloging of the various influences becomes difficult. |+
should also be mentioned that experience has indicated that small errors
in Initial conditions read from the flight test records affect the solution
noticably. The effect of initial condition errors is to shift the amplitude
or rotate a response time history rather than to change its general shape.

Although the technique is relatively simple and straight-forward, hours
or days may be spent before a satisfactory match Is obtained. The quality
of the match depends on the experience of the operator and the "goodness"
of the flight data. |In an effort to reduce the large amount of time required
for data reduction, hardware and analytical techniques which achieve high
speed, repetitive operation of the analog computer, such as reported in
reference 22, have been developed. These permit automatic application of
initial conditions, introduction of forcing functions, and then computation
of solutions for a predetermined time interval. At the end of this interval,
the computer stops the solution, resets, applies the same initial conditions
and forcing functions, and repeats the computation. The sequence rate is
fast enough to make the solution appear as a stationary wave when displayed
on the oscilloscope. A permanent record of the solution may be obtained
by photographing the oscilloscope. The stability derivatives, represented
by potentiometers, can be adjusted while the computer is operating In the
high speed repetitive mode. Thus, a change in a stability derivative would
cause a different solution to appear immediately on the oscilloscope. By
scaling the flight test record to the size of the oscilloscope trace and
graphing it on transparent material, one can readily determine when a
satisfactory match has been obtained.



In 1966 Wolowicz produced an Important work (ref. 23) in which he
discussed various factors that influence the determination of stability and
control derivatives and other behavior characteristics from flight data.
Techniques are given for estimating both horizontal and vertical c.g. location
as well as moments of Inertia. Wolowicz points out that in flight testing
the method of analysis selected governs the control input*, and the magnitude
and duration of the input influences the magnitude of the perturbation. He
points out that in well-performed pulse maneuvers with lightly damped
oscillation, it is possible to determine a 2-second pericd to within 0.02
seconds. Good accuracy in damping can be obtained for damping ratios less
than 0.2, The accuracy of the period and damping measurements becomes
rather poor for damping ratios greater than about 0.3.

In considering a method for reducing flight data to the desired stabilify
derivatives, Wolowicz Indicates that many of the approximate expressions and
the time-vector method depend upon control-fixed, free-oscillation data
which are not usuable when damping Is high; thus, data with high damping are
usually investigated by a least squares fechnique or analog matching.
Application of many of the simpler equations for determining derivatives
requires an evaluation of the period and damping; whereas, application of
the time-vector method requires, in addition, the determination of amplitude
and phase relationships. These quantities are obtained from the free-
oscillation portion of the pulse maneuver. The damping ratio, undamped
natural frequency, and phase relationships can be obtained for both short
period and phugoid free-oscillations by relations given in the text (ref.
23).

Wolowicz obtained good approximations for some of the longitudinal
stability derivatives by keeping only the dominant terms when the equations
of motion had been solved for a particular derivative. Cmée can be determined
from the initial portion (approximately 0.2 seconds) of a rapid pulse
maneuver by:

| .
- Yy Ag
Cmge = TpU<SC ASy ° (h
In a similar manner CN5e can be obtained by the relation:
__W_ ey
CN5e = ToU%S B, (2)

Once Cng, [s known, CLée can be approximated. The approximation for Cng
should résult in no more than 5% error while CL§, should result In no more
t+han 10% error. For both, accuracy ls improved If the peak control input and
acceleration response are used disregarding the phase lag between the two.

It has been found that the time difference in peak values of confrol input
and acceleration response is primarily the result of instrument phase lag.

*  This Is done primarily to take advantage of certaln simplifications In
the analysls provided by the use of special control Inputs. More general
methods are often independent of the type and quality of control input.
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Analysis by this method requires instruments with flat response characteristics
extending to relatively high frequencies (8 cycles/second).

An approximation Is also given for evaluating Cy, from the short-period
free oscillation data of the alrplane with control fixed:

Aan
CNg = CL 17 | - (3)

In this expression the pitching-velocity and the angle-of-attack-rate term
have been neglected in the short period form of the normal-force equation.

For conventional, low performance alrcraft, CLy = CNg for small values of a,
An approxlImation is also given for (CNq + CNg)» but it is quite difficult to
evaluate. The static derivative Cmy can be approximated to within 3% accuracy
from the relation

|
~ 1__13:._ 2
Cma = - TpU“Sc w”s.p. . (4)

An equation is also given for the sum of Cmq and Cmg:

21
0.693 )] ,

) = 2y
(Cmgq + Cmg) = maz [CNg - 4T((T%)S.p. (5)

where T = time parameter, m/pUS. Separating the two derivatives with any
accuracy Is quite difficult; however the phugoid damping derivatives Coy
and C, can also be obtained by using formulas given in Wolowicz's report:

uacc |, 2Cc _ 4Lphnpp

Ju cos o cos B pUS (6)
usCy 2y 20f,,m

3u ' cos a cos 8~ gpS

Substitution of Cy = CL cos a + Cp sin o and Cg = Cp cos a - CL sina into
the above relations enables one to find Cp, and ClLy-

Wolowicz also glves some short approximations for the lateral stability
derivatives. However, because of the more complex behavior of the airplane
and the larger number of derivatives Involved, the lateral-directional control
and stability derivatives are not as readily and reliably determined by the
use of approximate equations as are the longitudinal derivatives. Readers
inferested in lateral approximations should consult the report.

Along with outlining the approximations for both the longitudinal and
lateral stability derivatives, Wolowicz also discussed the application of the
analog-matching technique to flight data. It is Indicated that when flight
data preclude the successful use of the graphical time-vector technique or
the approximate equations, and when time and expense will not permit the
use of an experimentation with more sophisticated Techniques, recourse is
usually taken to the analog computer to determine the derivative values that
provide the best match of the analog time history with the flight Time
history of a maneuver. Use of the analog computer should only be considered
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when other techniques cannot be applied. An example of the analog matching
method was given for a high-performance aircraft in which the accuracies

in determining the derivatives were based on the amount the derivatives could
be changed before a trend toward mismatch became evident. For the longi-
tudinal motion the accuracies for CNy» Cmys Cmgg, and (Cpg + Cmg) were found
to be 10%, 5%, 10%, and 20% to 30% respectively, for a strong pull-up and
release maneuver. Typical accuracies for the lateral stability derivatives
based on well-conditloned releases from sideslip maneuvers were found tfo be
54, 15%, 5% to 30%, and 5% to 15% for Cng, Cg, Cnp, and Cog, respectively.

In 1967 Rubin et al. (ref. 24) presented the steps necessary to derive
the regression differential equation for a set of unknown paramefers. The
method was based on classical regression, that branch of statistics wherein
relationships among a number of different stochastic variables are found.
Classical regression consists of finding the coefficients or constants which
minimize the error criterion, usually a squared function of the error. An
example is given In which this method was employed to find the aerodynamic
stability derivatives for the lateral motions of an airplane. Rubin et al.
felt that the lack of connection between the papers on parameter identifica-
+ion and statistical regression analysis has led to much confusion among
readers, if not the writers of these papers.

In the same year a Canadian report by Howard (ref. 25) presented a
refined version of the equations of motion technique to determine the lateral
stability and control derlvatives of a STOL aircraft. This refined technigue
incorporates an allowance for unknown constant errors (inerfia errors) in
+he measured quantities. It was believed that this allowance made a
significant contribution to the overall accuracy of the method.

In 1969 three reports were published which may be valuable when discussing
techniques for reducing flight test data. Reference 26 by Clinkenbeard et al.
deals with the instrumentation necessary for exfracting stability derivatives
from V/STOL alrcraft with a discussion of a possible method to analyze flight
data. Analog matching and curve-fitting the equations of mofion by leas?
squares appeared to be the only techniques which would permit analysis of
the non-1linear equations. Since the analog matching technique is cumbersome,
time consuming, and requires sound engineering judgment, the least squares
technique was judged to be the more valuable for reducing the flight data.

A differential correction method for the identification of airplane
parameters is given in reference 27. The method employs an iferation
procedure and can be applied to both Jinear and non-linear differential
equations.

The differential correction method uses a criterion funcfion
that 1s quadratic In the difference between the measurement
vector and the model output vector, and it is minimized to
obtain the parameter estimates in the following way. The model
output is expanded in a Taylor series for model parameter per-
turbations about an estimate of the parameter vector. Only
first-order terms of the Taylor series expansion are refained.
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The Taylor series expansion is used to obtain an approximate
expression for the perturbations of the criterion function due to
plant parameter perturbations. This approximate expression Is
minimized to obtain a correction to the estimate of the para-
meters. The technique used to compute the model output
perturbations (that is, the sensitivity vectors) is described

in this paper and is believed to be new. This technique

improves the speed and accuracy of the differential correction
method.

The differential correction method is not guaranteed Yo converge, but this

fact did not cause a serious problem in samples tested thus far. Example plots
comparing measured data to fitted data are given in the report, with good
resufts indicated.

The third report by Larson and Fleck (ref. 28) describes the method of
quasilinearization--a combination of high-speed digital computer capabilities
with established Iinearization techniques resulting in a new method of
identifying parameters. The method is essentially an efficient means for _
evaluating parameters exlsting in a set of algebraic or differential equations,
The procedure is iterative in that the unknown parameters are estimated
initially and then corrected until an error function is minimized. Larson
and Fleck feel the mathematical concepts are well-known, but the combination
of these mathematical concepts with the high-speed digital computer yields
new and useful results.

An excel lent compariscon of methods for determining stability derivatives
from flight data is given in a paper (ref. 29) published In 1969 by Taylor
et al. The purpose of the paper was to compare a modified Newton-Raphson
method* developed by Taylor and 11iff (ref. 30) with existing methods. The
Newton-Raphson technique was developed to enable the use of a priori informa-
Tion and to automatically adjust bias terms and initial conditions to
compensate for errors. The method converges rapidly to minimize the weighted
mean square fit error. The a priori information may be based on wind
tunnel data or upon previously analyzed flight data. The a priori values are
also weighted so that, for a weighting of zero, the a priori values are
ignored, and, for an infinite weighting, the flight data are ignored. The
Newfon-Raphson method resembles the procedure often followed in analog
matching in which, initially, the wind-tunnel values are used and changes
made to improve the fit are weighted against the departure from the wind-
tunnel values. The method has been computerized and a detailed description
of the program is scheduled to be released in late 1971 or early 1972 as a
NASA Technical Note (ref. 31).

The attractiveness of this curve fit procedure is enhanced by a
recitation of the |imitation of some of the other methods. Taylor et al.
felt that Wolowicz's approximate formulas had many disadvantages, e.g.,

* See page 37 for a more detailed discussion.



only some of the primary unknown coefficients of stability and control
derivatives can be determined. In addition the forms of response that can
be analyzed are very restrictive, i.e., effects of controls must be either
dominant or negligible. The analog matching technique is not recommended
because the skill and technique of the operator is a factor in the resulting
estimates. Although the regression methods of least squares and of Shinbrot
involve no manual operation as does analog matching, nor are they limited

in the coefficients that can be obtained, experience has indicated the
variance of estimated coefficients to be excessive. Time histories from
reference 29 which indicate the results of applying each of these methods
to the problem of solving for the lateral stability derivatives have been
reproduced in the present work (fig. 1 thru 7). These plots, which even
include wind-tunnel data, are useful when discussing the accuracy of the
derivatives obtained from the flight data. The Newton-Raphson (very
similar to quasilinearization) method gave a resulting fit of the flight
data which was superior to that of the least squares, Shinbrot, and analog
matching methods. The Newton-Raphson method was employed to solve the
problem of poor convergence which may occur when fThere are several unknowns.
One imporfant advantage of this method compared with the least squares
method is that it is not necessary that all components of the state
variables and their time derivatives be measured. The method has already
been successfully applied to the problem of finding both laterai and
longitudinal stability derivatives of airplanes such as the XB-70.

Even with the good results obtained from the Newton-Raphson, Taylor
et al. are quick to point out that raw flight data must still be screened
and edited manually before any method of obtaining stability derivatives is
applied.

A very recent paper by Chapman and Kirk (ref. 32) discusses still
another Improved least squares method of matching analytical solutions to
flight records. In this approach the error function to be minimized contains
corrections to the calculated values of the dependent variable in addition
to the usual difference between the measured and calculated values. The
corrections are the first term in a Taylor series expansion of the dependent
variable in terms of the unknown coefficients of the differential equation.
The error—with-correction is squared and the sum of these squares, taken
at a number of points in time, Is minimized. Evaluation of the partiai
derivatives in the correction terms is by the method of parameiric
differentiation, a short description of which is given in the paper. The
authors report rapid convergence to acceptable values in the cases evaluated
thus far, four of which are reported in the paper. A particular point is
made in the paper that "if the starting solution does not roughly describe
the experimental data, divergence of the solution most often occurs.”™ The
procedure suggested for obtaining a starting solution Is to integrate the
differential equation a sufficient number of times o remove the highest
order derivative, that is, to change it info an integral equation. The
Integrals are then evaluated numerically from the experimental data. By
varying fthe interval of integration a set of equations can be obtained
from which the values of the unknown coefficients are extracted by the
method of least squares.
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Figure 1. Comparison of time histories measured in flight and computed by
using wind-tunne! coefficients.
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The computer time required to obtain convergence for a probiem with
| inear aerodynamics was about one minufe on a IBM 7094. The other three
problems reported involve varlous non~ilnearities.

At |east one other advanced technique of extracting stability deriv-
ative values from flight data Is currently under development at NASA's
Langley Research Center. Called the Maximum Liklihood Method, the procedure
employs a variatlonal technique fo minimize the error function. |t Is antic-
ipated that a description of this procedure will appear within the next year
as a NASA TN. One would also expect that additional refinement will appear
from time to time because of the Importance to good design of reliable flight
test derivative values.

The experiences reported in some of the modern papers seem to confirm
the view that for systems which are well represented by linear equations,
for example a light aircraft in most of itfs flight maneuvers, one can expect
to obtain good results with recent derivative extraction procedures provided

(1) the original data is accurate, relatively noise free, and
readable to three significant figures,

(2) all accelerations, as well as velocities and displacements,
are measured so as to reduce the computation's dependence
on any particular measurement and to eliminate the need to
compute accelerations by numerical differentiation of
possibly degraded velocity data.

I+ fol lows that the fewer the data channels available and the more comp lex

the equations required to describe the motion, the less likely one is to
obtain satisfactory results.
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LITERATURE REVIEW —

INSTRUMENTATION FOR STABILITY

AND CONTROL FLIGHT TESTING
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GENERAL REMARKS

The present discussion considers the questions: (1) What parameters
must be measured in order to determine the values of the stability derivatives
from flight data? (2) What instruments does one use fo measure the required
parameters?

During the discussion, two statements are held to axiomatic: (1) The
more independent parameters one can measure directly with comparable
quality, the more unambiguously and the more deterministically one can
assess the values of a gliven number of stability derivatives. (2) The
ultimate accuracy of any stability derivative extraction procedure is
limited by the signal-to-noise ratio of the measuring instruments.

Probably the most common deficiency of flight fest instrumentation
systems today is the use of inferior data transducers. Money saved there
is penny-wise and dollar-foolish. Compromises are often made In order to
obtain more channels of data and to make possible more rapid data reduction;
but it must be remembered that no amount of massaglng can make really poor
data good while a smaller quantity of good data can often serve many purposes.
On light aircraft where flight time is relatively Inexpensive such compromises
cannot be justified as cost effective.

[+ follows from (1) above and the fact that there are many more stability
derivatives which one would wish to evaluate than independent equations
of motion, that one should measure as many of the independent parameters
describing the motion as possible. Those which are readily measured include:

(a) Angles

angle of attack, a
angle of sideslip, 8
pitch angle, 6

roll angle, ¢

yaw angle,

(b) Velocities
airspeed, V
roll rate, p

yaw rate, r
pitch rate, q

(c) Accelerations

longitudinal acceleration, ax
vertical acceleration, az
lateral acceleration, a

roll acceleration, p

yaw acceleration, f

pitch acceleration, q
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In addition to these 15 primary measurements one can measure latitude
and longitude as functions of time with navigational devices and vertical
height as a function of time with an aitimeter. |f the wind velocities and
wind shears are known, then suitable integrals of the accelerations can be
equated to the velocities; and integrals of the velocities can be related to
the position. Such comparisons are quite valuable In establishing the
creditability of the primary measurements.

[f the weight and thrust during steady flight are also known, then the
resultant static aerodynamic forces are readily established from the
kinematics of the situation. These forces are then easily reduced to
coefficient (stability derivative) form.

Finally, to establish the forcing functions applied to the aircraft,
it is necessary that the positions of the aerodynamic contrcl surfaces be
measured as functions of time.

The Instruments available for measuring the parameters enumerated above
are discussed briefly in the following sections. It was felt that a detailed
treatise on each instrument type was beyond the scope of the present
discussion. The operating principle of each type is related and some typical
measuring accuracies are given. Precautions to be observed in application
are also stated.

Additional discussion of the instrumentation requirements of stability

and control flight testing may be found in references 33 and 34. The
discussion found in reference 23 relates NASA practice in this area.
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MEASUREMENT TECHNIQUES

Aerodynamic Angles

o and B are defined as the angles which the alrcraft reference line makes
with the tangent to the flight path. [|f the aircraft did not disturb the
filow field locally, then the entire flow would always be parallel to the
tangent to the flight path. But because the local flow has a different
direction from that at "infinity", one must either correct a local measurement
for this deviation (which depends on CL, primarily) or place the sensor in
a region where the flow deviation from its "true" value is negligably small.
For a small, single-engine aircraft the most convenient location, aerodyna-
mically, 1s at the end of a boom mounted from a wing tip. A boom extending
about six feet in front of the wing tip is generally adequate. It should
be determined beforehand, however, that boom bending and wing torsion are
within the limits expected of the a and B measurements.

Sensors are generally of two types: fixed or movable. The movable
type is typically a vane. A large flat plate or wedge is mounted at the
trailing edge of a rod. The nose of the rod is weighted so that the rod and
plate are mass balanced about a pivot point. A shaft, attached to the rod
at the pivot point, leads to a position transducer which also serves to
secure the rod to the aircraft. The aerodynamic characteristics of the rod
are such that a very powerful moment is developed if the rod does not align
itself with the local flow. One also desires that the ratio of this aero-
dynamic moment to rod inertia be very large so that the vane will accurately
follow high frequency disturbances. A natural frequency of 100 radians/second
is achievable (ref. 35). Alignment accuracy is generally on the order of
0.1° In a carefully-constructed deviee. A position fransducer capable of
resolution to one part in 400 Is usually required to take advantage of this
accuracy.

Fixed, pressure-sensing angle-measuring devices are capable of the same
accuracy, resolution, and response as movable vanes. They have the advantage
of being inherently more reliable because they have no moving parts external
to the aircraft. There are no bearings to sieze or static frictions to
overcome. Fixed devices are not as sensitive to small distortions In their
geometry, and they can be fabricated to receive smaller stresses from
external loads. Thelr external dimensions are also more compact. Their
principal disadvantage lies in the number and cost of the required pressure
transducer(s). This may be seen from the fact that angle-of-attack (or
angle-of-sideslip) is a direct function of the ratio of two pressure
differences. Because of thls the cost is about a factor of ten higher than
for the movable vane.

References 36 and 37 present a comprehensive discussion of the aerody-
namics of o and B sensors and contain a bibliography of earlier work. It
may be mentioned In passing that no significant works on the subject seem to
have appeared in the last 14 years. The authors have also been unable to
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find any description of recent ftranducer developments suitable for use with
these devices, particularly the pressure-sensing versions. The technology

for advanced verslons of previous transducers, however, is known to exist,

and it remains only to undertake their development.

Angular Orientation in lnertial Space

The development of Inertial navigators for intercontinental ballistic
missiles led to many improvements in the design and construction of gyroscopes.
Many of these techniques are evident in the so-called vertical gyros now
finding fncreasing use in light aircraft. These devices, which can measure
both pitch and roll, are provided with inertial vertical references to reduce
drift whenever the aircraft is in unaccelerated flight. A rate-sensing
switch, a long time constant, or unique construction prevents the "erection"
system from producing errors during maneuvers. Accuracies are typically
within 0.1°, Drift is less than 7.5°/hour.

The roll-stabilized, directional gyro with a magnetic flux gate performs
substantially the same function for yaw angle measurements.

Since these free or two-degree-of-freedom gyros ideally are not sensitive
to angular or |inear accelerations, they may be mounted anywhere within the
airframe and will give the same indication.

A very helpful, succinct discussion of the theory of operation of these
devices and their present state-of-development is given in reference 38.
Generally, for accuracies superior to those quoted above and for lower
drift rates, the use of "stable tables" or inertial navigator platforms is
recommended. The various types platforms are also discussed briefly in
reference 38,

Airspeed

The correct determination of indicated airspeed requires the existence
of (1) a pitot pressure source located in an area free of wakes and propeller
slipstream and (2) a static pressure source located in such a position that
the local pressure is the same as in the free stream at all airspeeds.
These conditions are seldom met ih light aircraft. The static pressure source
is usually located on the fuselage In the cabin area where a measurable
"position error'--variable with |ift coefficient and sidesl|ip--exists. Further,
cabin instrumentation Is generally inadequate for accurate, responsive inter-
pretations of dynamic pressure as alrspeed and of static pressure as pressure
altitude. Finally, proper attention is seldom given to balancing the pitot
and static lines so that the pneumatic lags are equal.

What is required for dynamic measurements is a quality airspeed head--one
which is guaranteed to have an inherent static pressure error no greater than
1% of dynamic pressure for o < 30° and B < 109--mounted at the end of a
6-foot-long, rigid boom, itself located at the wing tip of the aircraft. The
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static orifices in the airspeed head should be no less than 4 in number, each
with a diameter of .070 inches. One-fourth inch or larger pneumatic lines
should be used and the pressure transducers should be located at the base

of the boom or even in the boom if possible. The pressure transducers

should not be sensitive to acceleration and should have a basic accuracy of

% in. of Hp0 (62.2 newtons/meter2). With such an instrument it is possible
to measure speed changes of 2.16 mph accurately and thus determine the

x-direction derivatives.

Reference 39 gives a rather complete discussion of this hisfory of
airspeed heads, results of an extensive series of wind tunnel fests on a
variety of alrspeed head configurations, and a semi-empirical procedure for
modifying the head configuration to offset the alrcraft's position error.
Rosemount Engineering Corporation (ref. 40 and 41) has for some time
marketed airspeed probes utilizing another method of position error
compensation.

Angular Velocities

Angular velocity components are almost always measured with rate gyro-
scopes. These are gyroscopes which are constrained to one~-degree-of-freedom,
and their displacement about the output axis is proportional to fhe angular
rate input to the input axis. (Position-measuring gyros, on the other hand,
have two-degrees-of-freedom, that is, ftwo gimbals.) To measure the three
components of angular velocity three rate gyroscopes are required. Generally,
precision is better and drift rate lower than with two-degree-of-freedom
gyros. The most common type of signal pickoff used with gyros is a synchro.

Accelerations

In an accelerometer a mass is positioned in the case by two springs.
When the case is accelerated the inertia of the mass makes it move relative
+o the case. |f one restrains the mass's motion to a straight line this
becomes the devices' axis of sensitivity. By measuring the displacement of
the mass relative fo the case and knowing the spring constants one can
calculate the acceleration. The three components of linear acceleration are
readily measured with devices of this type. Accelerometers used with inertial
navigators fypically can sense accelerations as low as 107% g; thus, these
devices are often the most accurate instruments in the entire flight test
instrument repertoire and should therefore be used extensively. Careful fil-
tering of the output signal may be necessary because accelerometers will also
respond to vibrations of their supporting structure. These vibrations can be
induced by the engine, structural resonance, and atmospheric and boundary
fayer turbulence.

Care must be exercised in the mounting of accelerometers. |f they are
located off the c.g. they will indicate a component due to the angular
velocity of the alrcraft: a = 2w?, where a is the contribution to the total
acceleration, & is the distance from the actual c.g. to the accelerometer
mounting and w is the component of the aircraft's angular velocity in the
plane described by £ and the accelerometer's axis of sensitivity.
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It will be noted that if the accelerometer mass is mounted on a shaft
and constrained by two torslonal springs it becomes an angular accelerometer.
Unfortunately, such devices have not found the widespread application they
deserve. Since the measurements can be made with high precision and low
noise, they are excellent as additional, independent data channels for use
in improving the reliability of stability derivative extraction procedures.
Raw angular acceleration data is also useful for estimating the aerodynamic
moments produced by control surface deflections.

Control Surface Position

Generally, something as simple as the wiper of a potentiometer or a
synchro is connected to the control surface torque tube for position indi-
cation. The potentiometer must be capable of resolution of about one part
in 500 fo maintain accuracy comparable to that of other elements in the
measuring system. Calibration is usually carried out with an accurate
protractor. Operationally, the major concern is for the noise introduced
into the signal by structural vibrations.

Weight

Measurements of in-flight weight are usually acomplished by measuring
first the weight of the dry aircraft on the ground. The fuel volume and its
specific gravity are then noted as is the payload. The fuel consumed up tfo
a given time is then subtracted from the starting welght to find the weight
at that time. A fuel totalizer (integrating flowmeter) is usual ly used for
this purpose. Through the use of such means, the weight at any time can be
determined to within a pound or two.

Thrust

Direct thrust measurements on propelier-driven aircraft are extremely
difficult to make. An indirect method is usually employed. This involves
a knowledge of the airspeed and the power delivered to the airstream. Hence,
the engine test cell data for the given engine manifold conditions must be
known as well as the propeller characteristics when installed on the sample
airplane. Knowledge of the thrust in steady level flight, of course, is
tantamount to a measurement of aircraft drag.

Signal Conditioning and Recording

For many years a substantial effort has been devoted fo improving the
techniques for in-flight recording of the indications of data transducers.
The techniques of course are applicable to missile and space craft testing
as well as to aircraft festing. The objectives have been to (1) improve the
signal-to-noise ratio, (2) increase the data packing density on a given
quantity of recording media, and (3) record the data in a form compatible
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with automated data reduction procedures. Inevitably this effort led fo
digital encoding schemes using magnetic tape as the recording medium. Since
most transducers are normally considered to provide an analog output signal,
some form of analog-to-digital converter must be used. Care must also be
taken to scale the signal for best signal-to-noise ratio. References 42 and
43 document In a very detailed fashion the design analysis used to arrive

at an advanced, digital flight data system. Although the system was intended
for V/STOL aircraft, much of the computer software, errcr analyses, data
recording techniques, etc. are equally applicable to other aircraft fypes.

The sophistication of such a system is justified primarily by the very
high cost of flight time and the large amount of data in addition to flight
dynamics which must be acquired on each flight. Frequently, for light
aircraft, the latter situation Is not present and the cost of flight time
and additlional data reduction time are less than the cost of complex signal
processing and recording equipment. [n these circumstances, an analog
recording of 12 In. wide oscillograph paper running at a speed of 5 inches
per second is quite sufficient if the individual traces have a maximum
amplitude of, say #3 In., for the expected maneuvers. The fraces can be
read by hand with sufficient accuracy for later digital processing.
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PILOTING TECHNIQUES

It is perhaps an obvious truism that the excitation which the pilot
applies to the aircraft should be tailored to the character of the data he
desires to obtain. For example, if one is interested in measuring Cesy he
should perform a maneuver in which Cgg. Is a dominant factor--such as a
rapid roll. Since it is difficult to geTermine Cep and Cgg, individually in
a steady roll, it is preferable to make precise measurements of p and 8,

at the onset of a roll where the damping due to roll is still small. For
most alrcraft, the time durlng which this is possible is very short--on the
order of 50 milliseconds. Thus, to employ this technique 1t is necessary

to use instrumentation capable of accurately recording rapid transients.
Further, the pilot must extend the control surface In such a fashion that
the high frequency content of the responses are well excited in order to
obtain a satisfactory signal-to-noise ratio. In other words, the pilot must
attempt to apply a pulsed aileron deflection resembling a delta function.

Many derivatives, on the other hand, can only be evaluated from changes
in the equilibrium aerodynamic forces and moments. Rapid control surface
pulses do not excite the aircraft motions in a way that permits accurate
extraction of these so-called static derivatives; their extraction is
therefore facilitated by the use of long control surface pulses, Z.e.,
pulses where the excitation of the aircraft near zero frequency is
substantial.

Because of this dissimilarity in excitation requirements, it is usual ly
preferable to extract derivative values from responses obtained with a range
in pulse widths, giving more weight to the values obtained with the
appropriate excitation. Generally, pulses are performed from a trimmed
condition in smooth air. So-called double pulses--consecutive pulses of
equal and opposite amplitude--are frequently empioyed so that the aircraft
will not depart greatly from its original condition. Recording of the
aircraft motion in response to a pulse disturbance is generally continued
for a period of 15 fo 30 seconds in order to deflne adequately the low
frequency components of the motion. Pulse amplitude is usually kept small
so that the assumption of small pertfurbations is not violated. Increasing
amplitudes can be employed to determine the point at which significant
inertial or aerodynamic non-linearities are introduced. It is, of course,
desirable to employ the largest input compatible with the small perturbation
assumption to obfain the greatest signal-to-noise ratio. Larger inputs
may be used with non-linear analyses to define second order effects and
cross-couplings.

Elevator pulses are employed to excite the longitudinal responses

(u, a, 8, etc.) while both rudder and aileron pulses are used to excite the
lateral-directional responses (B, ¢, y, etc.).
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A RECOMMENDED PROCEDURE FOR

EXTRACTING STABILITY DERIVATIVES

FROM LIGHT AIRCRAFT FLIGHT DATA
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INTRODUCTION

Because of its versatility and ease of application, the modified
Newton-Raphson technique of Taylor et al. (ref. 29) was deemed most suitable
for the reduction of light alrcraft flight test data. A detailed exami-
nation was therefore conducted to determine the constraints on its application.*
An important conslderation was the degree of instrumentation accuracy
necessary to establish reliable aircraft parameters. For this purpose,
the tehcnique was used to test simulated flight data and investigate the
amount of noise that actual test data could contain and still be useful.
These results can aid in establishing instrument specifications.

* A copy of the computer deck and program listing for the Newton-Raphson
technique was obtained from Lawrence W. Tayior. The program Is written in
Fortran and required only minor modifications to run on an IBM 360/75. A
detailed description of the computer program and its operation appears

in a forthcoming NASA TN (ref. 31). Coples of the program may be obtalned
from L. W. Taylor, NASA Langley, Hampton, Virginia.
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LATERAL

The Newton-Raphson method, as employed by Taylor, is a means of selecting
those parameter values which best fit an assumed model to a data set according
to particular error criterion. The error criterion is more general than the
classical least squares criterion in that it permits the fit error to p, r,

B, and ¢ to be minimized as well as the fit error fo p, r, and B. The
technique also enables one to use a priori values of the stabitity derivatives,
bias terms, and initial conditions to improve the fit of the equations to
flight test data. |t is also possible to extract the stability parameters

tfrom incomplete flight data, a distinct advantage over several other techniques.
The reader is directed to reference 29 for a more detailed exposition of the
theory of this technique,

For investigative purposes, some "flight" time histories were computed
by the following procedure. The linearized lateral equations of motion,

[5 = Lpp + er + LBB + Laaéa + L6r5|";

r=Nop + Ner + NgB + Ns,8a + Ng 8,

.Y Y Y§ Y§ €N
1 _r _ 9 a —

B Uo p + (UO ])r + Y\/B + UO ¢ + Uc_)—ﬁa + Uo 6r‘,

¢ =p,

with I,, assumed zero, were solved in the Laplace domain and time histories
calculated by the method of residues as given in reference 44. Values for
the dimensional stability derivatives used as coefficients for equations (7)
were those of a fypical light aircraft, the Cessna 182. The values of p, T,
B, ¢, p, F, and B resulting from steps of 3° and 20° were tabulated at
intervals of 0.025 seconds for a period of 10 seconds. These responses are
plotted as solid curves in the figures showing the fit obtained by the
Newton-Raphson technique. Because aileron deflection was assumed to be
zero, values for L§z and N§y could not be determined. Based on results of

a sensitivity analysis presented in reference 1, Yps Y, Y§5, and Yg.

were taken 1o be zero. Thus, the problem reduces to a system of three
equations containing nine unknown parameters, as shown below:

p Lpp tLer+ LgB+ Larﬁr,
r = Npp + Ner + NBB + N6r6r, .
B = -r +Y,8 + 3¢,

UO

pon)
it

6=p .
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The Newton-Raphson technique was required to fit the computed time histories
of p, r, 8, ¢, p, r, and B for various situations. Equations (8) can be
written In matrix form as:

51 [ e g 0 ](e] Ls, | [ar]
r Ny Np Ng O ||r N
|- P + r (9)
B o -1 v, 18 0
UO
o] | 00 0]l O
A short-hand version is given by
X = AX + BU . (10

The dimensional stability derivatives used in the A and B matrices of
equation (10) as a starting point for the first iteration will be referred
t+o as the initial values of the stability parameters. The Newton-Raphson
technique minimizes the fit error, J, one part of which is the weighted
mean square difference between the system responses and responses from the
mode| of the system. The technique simultaneously minimizes the difference
between the computed and the a priori values of the parameters. A priori
values and initial values are the two ways available for introducing
background knowl!edge of the stability parameters into the computational
scheme.

The Newton-Raphson technique was first applied to the computed data
using zero initial and no a priori values. After fen iterations, the fit
error remained large and had converged to an erroneous set of stability
parameters which gave a poor fit of the alrcraft dynamics. This tendency
toward local convergence probably results from portions of the aircraft's
response being under-excited by the rudder step. Possibly, convergence to
realistic values of the parameters would occur from zero Initial values for
data obtained after disturbing the aircraft with more violent actuation of
the controls. Figure 8 shows the results of this attempt to fit the
computed data due to a rudder step of three degrees (0.0524 radians).

Following some initial fluctuations the fit error, J, (see figure 9}
levels out and, after seven iterations, indicates no significant improvement
of the fit. This suggests that the technique has converged, but to unreliable
values of the stability parameters {(figure 8). Examination of fit error, J,
versus iteration number in figure 9 and the time histories in figure 8,
indicates that additional information concerning the values of the dimensional
stability derivatives is necessary to obtain an adequate fit of the data.

Thus, an effort was made to develop techniques for providing initial
approximations of these parameter values, which could, in turn, be used as
inputs to the Newton-Raphson fechnique in either the role of a priori
values for the parameter values in the error criterion or as initial values
of the A and B matrices.
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J,
fit error

iteration number

Figure 9. Convergence of the fit error for zero initial vatues
and no a priori information.

To estimate values for the dimensional derivatives, the methods for
calculating the non-dimensional stability derivatives presented in reference 1
were reviewed, and the procedure considered most accurate for each derivative
was programmed for the digital computer. These procedures were divided fo
form two programs, one for the longitudinal mode and one for the lateral.

A simple polynomial curve-fitting scheme was used to describe the methods
which rely on information from experimental or theoretical graphs. By
using these polynomial curve-fits and the included interpolation procedures,
i+ 1s felt that data obtained from these programs is as accurate as that
estimated from the actual graphs. Once the methods for estimating all of
the non-dimensional stability derivatives were computerized, the dimensional
stability derivatives could be calculated by simply "inputting" certaln
inertial and geometric information to the programs. Program listings and
sample outputs are presented in Appendix B.
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With these programs to provide prior knowledge of the stability parameters,
the Newton-Raphson technique converged more rapidly and gave realistic values
for the stability parameters. The procedure for reducing flight test data
would now include Inputting to these programs pertinent geometrical and
inertial characteristics and flight condition data for the aircraft being
evaluated. These programs would then produce values for the stability
parameters, by theoretical methods gleaned from the |iterature, for use as
either initial or a priorl input values in the Newton-Raphson technique.

The majority of the Input data necessary for estimating prior values of
The stability derivatives can be obtained from a three-view drawing of the
aircraft under investigation. Inertial characteristics are normatly
available and flight condition data such as speed and altitude are readily
determined. |In addition to calculating the non-dimensional and dimensional
stability derivatives, the programs were designed to evaluate the coefficients
of the transfer function, extract transfer function poles and zeros by
factoring the numerator and denominator polynomials, and calculate infor-
mation necessary to describe the frequency response of the airplane.

Advantages of using the previously described computer programs for
determining values of the dimensional stability parameters from flight
test data are easily shown. For demonstrative purposes, values of the
stability parameters used to compute the simulated flight test data of
figure 8 were randomly varied by 25% both positively and negatively and
used as Inputs to the Newton-Raphson technique as both a priori and initial
values.

First, a priori values (parameter values used in the error criterion)
within 25§ of the actual and zero initial values of the parameters were
inserted into the computational routine and an attempt was made to fit the
simulated flight test data of figure 8. The fit error, figure 10, indicates
that convergence was obtained, but examination of the two sample traces in
figure 11 shows that the dynamics of the airframe are not matched. Next,
zero a priori values and initial values within 25% elther positively or
negatively of the actual were introduced into the Newton-Raphson technique,
and a fit of the data from figure 8 was again attempted. The simulated
flight test data was matched very closely, as evidenced by the examples
of figure 12. The fit of response variables not shown in figure 12 was
equally good, as indicated by figure 13, a plot of fit error versus
iteration number. A comparison of flgures 10 and 13 indlicates that the
fit error decreases by more than three orders of magnitude when the same
prior knowledge of the stability parameters Is inserted into the
computational routine as initial values rather than as a priori values.

In addition to demonstrating small fit errors and agreement with computed
time histories, the technique should also determine values for the
dimensional stability derivatives accurately. Table 1 presents a comparison
of the results achieved from various approaches.

The actual values of the stability parameters in the second column of
table 1 were those used to generate the simulated flight test data.
Consequently, they represent values of the parameters which the technique
attempts to recover. The fit error obtained when these values were
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Figure 10. Convergence of the fit error for zero initial values and a priori
values In error by 25%.
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Zero initial values {nitial values in| A priori values
Derivative | Actual Zero a priori values error by *25% in error by *25%
Lp -12.45 ~-1.15 -11.8 -10.02
Le 2.54 -.141 2.56 2.89
Lg ~-28.77 1.78 -27.3 -20.44
LS 4.75 -3.23 4.6 3.70
Np -.372 -.254 -.62 -.577
N -1.26 ~.009 -1.27 -.958
Ng 10.07 .198 9.49 12.72
NS -10.25 -.785 -10.2 -8,20
Yy -.146 -.046 ~-.146 ~.139
Fit error | .47 X 1077 .0158 .33 X 107° .01718

Table 1. Comparison of lateral coefficient values.

Inserted in the A and B matrices is theoretically zero, buf appears as a
small number due to machine round-off. The third column depicts values for
the parameters obtained when no prior information is inserted info the
routine. These parameters correspond to the fit error and time hisfories
presented in figures 9 and 8, respectively. The fourth column lists values
for the stability derivatives obtained when each parameter was varied by
25¢ either positively or negatively and then Inserted in the Newfon-Raphson
technique as initial values. Figures 12 and 13 illustrate the time histories
and fit error, respectively, obtained for this atfempt. These same initial
estimates were inserted into the computer program as a priori values, and
the resulting parameters appear in column five. Figure 11 indicates fhat
these parameters fail to match the dynamics of the aircrafft.

In applications to actual flight data, the programs given in Appendix B
would be used to generate the best available predictions of the theoretical
values of all the stability derivatives for the particular aircraft and
flight condition. These derivatives are then used as the Initial estimates
in the exfraction procedure.

The stability derivative sensitivity analysis presented in reference 1
indicates that four stability derivatives (L,, Lg, Np, and Ng) are most
influential in determining lateral stability. An investigation of column
four in table 1, input of initial values within 25%, shows that each of
these major derivatives was recovered within 6% of actual value. |1 should
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also be noted that, even though some of the unimportant derivatives such as
Np are in error by as much as 67%, the time histories are closely matched.
After examination of table 1, one must conclude that, for best results,

prior information concerning the stability parameters is best used as initial
values in the A and B matrices of equation (10).

From the preceding results, it seems possible to determine reliable
values of the stability parameters, provided good data and theoretical
estimates of the parameters within +25% of the actual value are avallable.
It is the writers' opinion that the techniques gleaned from the literature
and computerized in the programs of Appendix B are capable of estimating
the important dimensional stability derivatives this accurately. Thus, the
problem of obtaining usable data remains of primary concern.

Since the results of all parameter identification procedures depend
heavily on the quality of test data available, instrumentation is basic to
any analysis. Some of the more common instrument-induced errors include
random noise, calibration errors, mounting inaccuracies, Instrument
blas, and time lags, among others. Consequently, to achieve reliable
results, the data must be conditioned by compensating for instrument
shortcomings. Reference 26 by Clinkenbeard et al. provides an in-depth
investigation of methods for obtaining knowledge of instrumentation errors
and techniques used to compensate for these errors prior to extraction of
the stability parameters. In the present study, several of the errors in
data acquisition deemed most likely to occur in light aircraft flight tests
were considered.

First, the effect on parameter evaluation of using data which contains
random noise is investigated. An ideal situation would be to provide the
instrumentation engineer with a chart of the type and maximum amount of
data noise permissible to obtain the important stability parameters within
a certaln accuracy. However, the variety of nolse types, methods of noise
compensation, and techniques for stability parameter determination make
such a categorization impossible at this time. Instead, by use of the
Newton-Raphson technique, an attempt was made to correlate parameter
evaluation accuracy with the amount of allowable nolse of the more prevalent
Type. This was accomplished by generating exact time histories from known
dimensional stability derivatives and attempting to retrieve these known
coefficients from the time history affter it had been contaminated by random
noise. The generated time histories, shown in figure 8, were contaminated
with random nolse having a normal distribution with zero mean and a standard
deviation of unity. This noise was scaled to be a given percentage of the
absolute value of the largest peak for each of the input time histories.
Therefore, 5% random noise implies that at each data point a random amount
was added to the time history corresponding to 5% of the largest value in
the recording interval.

Consider first figure 14 which shows an attempt to fit generated data
containing 5% random noise using the Newton-Raphson technique. Initial values
of the stability parameters in error by 25%, either positively or negatively,
were inserted in the fechnique as a starting point for the first iteration.
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Convergence was obtained and a good match of the time histories achieved,
with the exception of slight deviations in the traces of p and B as figure 14
s. However, large errors occurred for some of the more important

illustrate

parameters such as Ng, LB, Lp, and L5r'

These deviations probably result

from a noise-induced error magnification assoclated with the non-uniqueness
problem encountered when solving for more unknowns than given equations.

To determine the effect on parameter evaluation of random noise of
various magnltudes, the computed flight test data was also contaminated

with 3% and 10% random error.
with zero mean and standard deviation of one.

The noise was again normally distributed
Also in keeping with the study

of 5% noise, initial values of the coefficients in error by *#25% were used

as a starting point for the first iteration.

Table 2 presents a comparison

of the accuracy with which the stability parameters were retrieved for

varying levels of random nolse.

As expected, table 2 reveals that parameter

evaluation accuracy decreases rapidly as the magnitude of random noise

contained in the data increases.

The values of the more important stability

parameters recovered from data contaminated with 3% random noise seem

partially acceptable with the possible exception of Lp, LR, and Ng.

However,

the coefficients extracted from data containing 5% (time histories in
figure 14) and 10% noise are totally unacceptable as table 2 indicates.
Therefore, any instrument used to measure aircraft response must induce

less than 3% noise or else extensive data smoothing is mandatory.

One then concludes that even though a good fit of the contaminated
data seems to have been obtained, the parameter values may be unreliable.
Therefore , even data with noise which is "well-behaved", meaning normally

0% random 3% random 5% random 10% random

Derivative Actual noise noise noise noise
Lp -12.45 -11.8 -14.76 -16.72 -20.54
Lr 2.54 2.56 2.47 2.26 .953
Lg ~28.77 -27.3 -33.2 -37.04 -45,28
L5r 4.75 4.6 4.13 3.33 -.482
Np -.372 -.62 -2.87 -2.87 -12.84
Nr -1.26 -1.27 -1.22 -1.23 -2.02
NB 10.07 9.49 4.40 L0443 -17.15
N, -10.25 -10.2 -10.2 -10.44 -12.8
Yy -. 146 -.146 -.167 ~.1825 -.244

Table 2. Effect of random noise on coefficient values.
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distributed with zero mean, must be conditioned to smooth out the noise

before any analysis is performed; otherwise, the validity of the results
must be questioned.

then considered.

The effect on parameter evaluation of biased instrument readings was

This problem arises when a particular instrument, for

example the gyro measuring p, is in error by a constant amount, called a

This type error is normally the result of misalignment or failure to
initially null the instrument fo zero.
probably the easiest and most efficient way of minimizing the effect of bias

bias.

errors.

+ime histories resulting from rudder steps of three and twenty degrees.

A high signal-to-noise ratio is

This was clearly seen by adding a constant bias Increment to the

Because of the high signal-to-noise ratio the coefficients obtained from
fitting the twenty degree responses were only slightly affected; however,
the bias increments caused significant errors in parameter estimates from

the fit of responses to a three degree rudder step.
comparison of the effect on parameter identification of bias errors in
several of the response traces to a three degree rudder step.

dependent upon the response variable in error.

39/sec?

parameters to a bias error in p.

influential in the determination of L, Np, and Yy.

Table 3 provides a

Examination
of table 3 reveals that the effect of constant bias Increments is heavily

For example a bias of

in I has negligible effect on the coefficients except for Yy; whereas
a blas of 3°/sec in r creates large errors in most of the parameters.
table indicates that L, Lg., Np, and Y, are more sensitive than the other

rise to large discrepancies in Lg., N§., and Yy.

The

Likewise, a bias error in ¢ seems more
Bias errors In B give

In considering the effects
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Bias Bias Bias Bias Bias Bias
perivafive Actwal | error of | error of | error of | error of § error of | error of
30/sec 39/sec |3 InB {3° 1In¢ Bo/sgc2 3°/s?c2
inp inr inp inr
Lp -12.45 -10.88 -18.20 -12.6 -13.8t -15.63 -12.78
Lr 2.54 2.10 5.55 2.76 2.04 2.14 2.61
LB -28.77 -30.80 -47.43 -29.3 -31.73 -36.07 -29.52
L5r 4.75 9.834 1.021 34,1 5.02 4.76 4,87
Np -.372 .0294 6.78 -.424 L0117 -.384 -.4
Nr -1.26 -1.43 -3.85 -1.34 -1.09 -1.28 -1.35
NB 10.07 11.02 31.52 10.02 10.83 10.09 10.02
N5r -10.25 -10.94 -9.82 -20.3 -10.26 -10.28 -10.3
Yy -.146 -.,178 f.154 -.066 -.314 -.147 -.07
Table 3. Effect of bias error on coefficient values.




of constant bias increments, one should remember that in addition to the
control surface derivatives, the most important lateral parameters are L,,

Lr, Ng, and Nr. Therefore, the effect of bias errors on these stability
coefficients should be carefully considered; whereas differences in parameters
of minor importance, such as Np, may not significantly affect the theoretical
aircraft model. In summary, if instrument bias errors are not removed prior
to extraction of the stability parameters, serious discrepancies in calculated
coefficients may be present. However, by having previous knowledge of
instrument inadequacies, the aerodynamicist can remove the effect of constant

bias error when preconditioning the test data or compensate for it during
the extraction procedure.

The effect on parameter evaluation of another prevalent instrument
error, the simple time lag was considered. These time delays often resuit
from servo or filter characteristics. For demonstrative purposes the basic
computed flight test data of aircraft response to a three-degree rudder step,
including a time lag of 1/(s + 1) in the B trace was analyzed by the Newton-
Raphson fechnique. Initial values of the stability parameters with errors
of *25% were used as a starting point for the first iteration, and the time
histories were errorless except for the time lag of B. Figure 15 presents
the B time history, before contamination by the time lag, the contaminated

‘2 /9\ —— — log-less data
é c\\ lag date analyzed
I 4 o oo o fitted curve
.08 - \
/ \
L
[
oa \
| \ 3
| } N
B \ ‘ =)
radians 0.0 ; 4 / /)o\\\ S ~ P =
——sec \ W 7 e
v ! Ra”
\
\
-04 — \ /
)
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- | ] | 1 l [ |
.08 I > - % 5 6 7
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Figure 15. Comparison of time histories resulting from an attempt to fit data
containing a time lag.
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t+ime history, and the trace obtalned when the lag-induced data were analyzed.
The results are very intriguing because the time history computed using the
extracted coefficients closely matches the orlginal lag-less data rather than
that containing the time lag, the data set actually analyzed. Perhaps this
oddity becomes more reasonable when one recalls that each of the other response
variables were errorless, and thus the effect of a time lag in one variable
does not destroy the overall time history match.

The comparison of parameter values presented in table 4 indicates that
even though the time lag produces error in the extraction procedure, the
resulting stability derivative values are acceptable. For example, with the
exception of Np*, the largest inaccuracy occurred in determining Lp which is
within 13% of the actual.

Derivative Actual No time lag é fag of g—%—r
Lp -12.45 -11.8 -10.9
L, 2.54 2.56 2.76
Lg -28.77 -27.3 -26.44
L, 4,75 4.6 4,53
Np -.372 -.620 -.774
N -1.26 -1.27 -1.28
Ng 10.07 9.49 8.98
Nér -10.25 -10.2 -9.7
Yy -.146 ~-.146 -.158

Table 4. Effect of time lag coefficient values.

* Accurate values of Np are not to be expected because the input used to
exclte the aircraft was a rudder step. An aileron input is required to
produce responses from which accurate values of this derivative can be
extracted.
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LONGITUDINAL

For the sake of completeness a description of how the procedure for
extracting stability derivatives from flight data would be applied to
fongitudinal motion is included. While the discussion which follows is similar
to that already presented for the latera! mode, applying the extraction
procedure to the longitudinal mode is a more complex problem warranting
separate investigation.

The finearized longitudinal equations of motion (11) were solved in the
Laplace domain,and "flight" time histories were calculated by the method of
residues as given in reference 44,

U= Xgu + Xyw + Xqq = 32.2 8 + Xg 86,

(1 - Zydw = Zyu + Zyw + (Ug + Z3)q + Zs Se, )
g = Myu + Myw + Mow + Mqa + Mg 0e,
6 =q.

Values of the dimensional stability derivatives used in equations (11) were
those of a typical light aircraft, the Cessna 182. The values of u, w, q,

6, 4, w, and g resulting from an elevator step of one degree were tabulated

at intervals of 0.1 seconds for a period of 40 seconds. These responses are
plotted as solid curves in the figures showing the fit obtained by the Newton-
Raphson technique. Based on the results of a sensitivity analysis presented
in reference 1, Z; was taken to be zero. Thus, the problem becomes a system
of three equations containlng thirteen unknown parameters, as shown below:

0= Xyu + Xyw + Xqq = 32.2 6 + Xgbe,
w o= Zyu + Zyw + (Uo + Zq)q + Z(Seae,
. (12
('q = MuU + MwW + M\;JW + qu + M(Sede,
6=q.

Equations (12) were modified to give the same general form used for the
lateral solution, equation (9). This modification necessitated eliminating
w from the right hand side of the § equation, removing the dependence of g
on w. This is accomplished by substituting w (given by the second equation
of (12)) into the q equation yielding equations of the form:

U= Xygu + Xw + Xqd = 32.2 8 + Xg e,

W= Zyu + Zw + (U + Z0q + Z§ 8¢ )
q = (My + ZyMpdu + (My + MuZ)w + Mg + My(Uo + Zg)]q + (Mg, + Z§Mu) e,
8=q.
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Equations (13) can be written in matrix form as:

u Xu X Xq -32.2| |u
W Z, Zy (Ug + Zg) 0 W
q (My + ZyMy) My + MgZy) (Mg + Me(Uy + Zg)) 0 q
6 0 0 ! 0 0
-4t b (14)
[ X 17[s
o |1
s
" e
M5e + deMw
0

Equations (12) had thirteen unknown dimensional stability derivatives. The
technique employed to cast the equations intc the form required by the
computation procedure resulted in combining My with other derivatives; fhus,
only twelve coefficients can be determined. Another relation must ftherefore
be specified to permit evaluation of the individual derfvatives. For light
aircraft, the relation

C ~
Cm@e = - —@CL(SG (15)

Is usually used to evaluate Cmg,- The corresponding equation for the
dimensional derivative is
Lgm
MSe = T L8g » (16l
Yy

From this relation and the values obtained from the Newton-Raphson method for
the twelve coefficients, each of the dimensional stability derivatives can
be evaluated.

Even though the procedure indicates that every derivative can be
evaluated, probliems exlist In obtaining reli@ble values of all the derivatives
because the coefficients determined by the q equation are functions of two
or three derivatives instead of one derivative as in the lateral mode. One
such problem encountered is that of obtaining an acceptable value for My, a
very important derivative in the longitudinal mode. Equation (14} indicates
that Zg, will be determined. Then using the equation (16) which relates
M§e and Zgg, My, can be written as:

K Zgm
Mo = 57— - — , A7)
W Zse  lyy

where K 1s the coefficient obtained from the Newton-Raphson technique for the
term (Mgg + Z8My) Examination of the equation for My reveals that two
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numbers which are on the order of 1.0 in magnitude must be subtracted to
obtain a value of My, which itself will be on the order of 0.01 for a light
aircraft. Since two large numbers are subtracted to obtain a value which is
two orders of magnitude smaller than either of the original numbers, the
accuracy achieved in calculating My, a very important derivative, may be
quite poor.

First, the Newton-Raphson technique was applied to the generated "flight"
data using no previous parameter estimates as a starting point for the first
iteration or as a priori values. Since the rows of matrix A in equation (10)
become dependent when the parameters are Identically zero, the Initial values
were set at +0.1 depending on whether the actual coefficient was positive or
negative to simulate the case of no prior knowledge. Figure 16 denotes that
after six iterations no significant improvement of the fit occurred. Figure
17 illustrates the result of this attempt to fit the computed data due to an
elevator step of one degree. Convergence occurred and, with the exception
of 6 (pitch angle), the time histories are closely matched. Figures 16

20002

16 |-
J, 12 |
fit error
8 L
4 +
)] |

{ 2 3 4 5 6

iteration number

Figure 16. Convergence of fit error for initial values of *0.1 and no a priori
information.
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and 17 glve the preliminary indication that reliable values for the coeffi-
cient were extracted. That this was not the case is revealed by examination
of table 5. The coefficient values are totally unacceptable even though
convergence was obtained, and the time histories of figure 17 are reasonably
well matched. Thus it seems necessary to obtain additional information
concerning values of the stability coefficients, to ensure that satisfactory
parameters are extracted.

Derivative Actual Initial values of +0.1
No a priori values
Xy -.0295 ~-.0241
Xu .0871 .8675
Xq 0.0 16.31
Zu -.2933 -.1132
Zy -2.2 ~.1652
Uo + Zq 214.5 105.9
M, + Z My .0024 -.0035
My + MuZy -, 1066 -.3947
Mq + Moo -6.024 -9.941
Xée -6.188 167.3
de -44,32 199.9
M5e + Z(SeMV'v’ ~39.14 -117.6

Table 5. Comparison of actual longitudinal coefficients with those obtained
without prior information.

This prior knowledge of the longitudinal parameters may be obtained from
the program listed in Appendix B. This program is a computerization of the
theoretical methods for calculating stability derivatives gleaned from the
literature and deemed most accurate for each parameter. The reader is directed
to reference 1 for a detailed description of these methods. A general
discussion of this program was previously included in the presentation of
lateral results. With this program to provide prior information concerning
coefficient values, the Newton-Raphson technique extracted much more reliable
values of the coefficients as is shown below.

First, values of the stability parameters used to compute the "theoreti-
cal™ flight test data of figure 17 were randomly varied by 25% both positively
and negatively and then used as inputs to fthe Newton-Raphson technique as
both a priori and initial values.
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A priori values (parameter values used in the error criterion) within
25% of the actual and initial values of *0.1 were inserted into the Newton-
Raphson procedure in an attempt to fit the "flight" test data of figure 17.
The fit error (see figure 18) indicates that convergence was obtained. No
significant Improvement in the fit occurred after eight iferations. However,

the sample time histories of figure 19 show some deviation between the actual
and the fitted traces.

ZOOC{éi

300 |-
Js 200 }
fit error
100
] 1

| 2 3 4 5 6 7 8
iteration number

Figure 18. Convergence of fit error for initial values of
+0.1 and a priori values in error by *25%.

Next, a fit of the data in figure 17 was attempted using zero a priori
values and Inftial values within *25% of the actual as a starting point .
for the first iteration. The examples in figure 20 show that the simulated
test data was matched very closely. Figure 21 of fit error, J, indicates
that the response variables not included as examples in figure 20 were mafched
equally well. A comparison of figures 18 and 21 Indicates a reduction in
fit error of approximately three orders of magnitude when the same prior
knowledge of the stability coefficients is inserted into the computational
scheme as inifial values rather than as a priori values. The final decision,
as to which method of using prior information is more benefical, was based
on a comparison of parameter evaluation accuracles presented in table 6.
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Figure 20. Comparison of example time historjes resulting from initial values
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Figure 21. Convergence of fit error for Initial values in error
by +25% and no a priori information.

The values in the second column were those used to generate the computed
flight test data. Consequently, they represent values of the coefficients
which the Newton-Raphson technique attempts to recover. The third column
depicts parameter values obtained when the actual coefficients were randomly
varied by *25% and inserted in the computer program as a priori values.

The fourth column lists values obtained when these same initial estimates
were inserted into the computational routine as a starting point for the
first iteration. This table indicates that best results are obtained when
theoretical estimates are inserted in the extraction procedure as initial
values rather than as a priori values.

In application of this procedure fo actual flight data, the programs
glven in Appendix B would provide theoretical predictions of all the stability
derivatives for the particular aircraft and flight condition. These deriva-
tives are then used as initial estimates in the extraction procedure.

The stability derivative sensitivity analysis presented in reference 1
deemed Zy, Mg, My, M, as the stabllity derivatives most influential in
determining longitudinal motions. An Investigation of column four in table
6 shows that even with initial parameter estimates within 25% of actual, large
errors may exist in several of the more important parameters., Therefore, it
seems necessary either to approximate the longitudinal coefficients with less
+han 25% error initially or to reduce the number of unknowns to be determined.
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Initial values of 0.1 Initial values within
Derivative Actual A priori values within +25%
+25% No a priori values
Xy ~.0295 -.02884 -.02916
Xy .0871 .133? .1188
Xq 0.0 -.4997 . 2681
Z, -.2933 -.3030 -.2417
Zy, ~2.2 -2.123 -1.745
Uo + Zq 214.5 218.2 179.2
My + ZyMy .0024 -.0001826 .001882
Mw + MuZy -. 1066 -.0698 -.1391
Mg + MyUo -6.024 -2.830 -6.587
X8e -6.188 3.876 -5.317
Z8¢ -44,32 6.187 -15.19
Msg * ZGeMQ -39.14 -22.42 ~48.,35
Table 6. Effect of initial and a priori values on longitudinal coefficients.

I't may be noted that in general as the difference between the number of unknown

parameters and the number of equations increases, the more non-unique the

solutions become.

For example, the more the order of a polynomial used to

fit a glven data set exceeds the number of data points, the more freedom
one has in choosing the coefficients.

extract nine coefficients from three equations.
the proper values for twelve coefficients from three equations,

In the lateral case one attempts to

Here, one tries to recover

I+ is

not surprising, therefore, that even with error-less data it was more
difficult to recover the longitudinal parameters accurately.

The effect of data containing random noise on evaluation of longitudinal
In a manner similar to that used In

stability parameters was considered.
studying noise effects on the recovery of lateral parameters, the theoretical
data of figure 17 was contaminated with 5% random noise having
Then using initial values within
starting point for the first iteration, an attempt was made to

standard deviation of unity.

data with the Newton-Raphson technique.

Figure 22 illustrates

with which the noisy data was matched after ten iterations. A
the time histories was achieved with the exception of slight deviations in

zero mean and

+25% as a

fit this

the closeness

good match of
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the traces of 6 and u. However, such large errors were obtained when
evaluating the stability coefficients, that no further investigation of
noise effects on longitudinal parameters was attempted.
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CONCLUDING REMARKS

The application of a modified Newton-Raphson technique to the problem of
obtaining both lateral and longitudinal stability derivatives of a typical
light airplane from flight test data has been presented. For rapid conver-
gence to reliable vatues, it Is important to use initial extimates of the
derivatives which will closely approximate those possessed by the alrcraft.
Computer programs which will give acceptable initial estimates for both the
longitudinal and lateral stability derivatives of a light aircraft are Iisted
in Appendix B. Application of the Newton-Raphson technique was found to give
good results when the initial estimates of the lateral stability derivative
values were within 25% of their actual value; however, even more accurate
estimates are necessary to obtain good results from the longifudinal mode.

Because no unique set of stability derivatives can be determined from a
situation with more unknowns than equations, such as exists here, the most
effective use of the technique requires the exercise of more judgment than
one would wish and makes its use by the inexperienced somewhat less than
routine. As one might expect, convergence will be easier to obtain as the
number of stability derivatives to be recovered in reduced, thus giving a
more determinant system of equations. In the previous analysis, Yp, Yr, Yg,,
Yg ., and Z, were assigned values because, in general, alrcraft motion Is
refatively insensitive to variations In these particular derivatives (ref. 1).
Further study of the sensitivity analysis indicates that it may also be
practical to assume theoretical values for other derivatives, yielding a
smaller number of derivatives fo be determined. In reference 1 it was found
that the derivatives which proved to be of major importance for the longitu-
dinal analysis were Z,,, My, My, and My, while for the lateral analysis they
were Ng, N, LB’ and Lp. Therefore, ftheoretically estimating derivatives such
as Xy, Zy, My, Xy, Xy, and Zg for the longitudinal mode will reduce the number
of parameters fo be identified and improve convergence. For the lateral mode,
if the input is predominately due to a rudder deflection, a theoretical value
of Ny would reduce the number of unknown derivatives; however, if the input
is dominated by an aileron deflection, a theoretical value of L, may be
assumed.

The program described makes it possible to favor in the extraction
procedure those measurements or maneuvers deemed fo be more reliable.
However, information from other sources--insturment calibrations, previous
experience, efc.--must be used to take advantage of this flexibility. For
the studies conducted here, all quantities were taken fto be equally important.
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SYMBOLS

stability matrix

normal acceleration

control matrix

wing force parallel to the airplane reference line

coeftficient of wing force parallel to the airplane reference
I -—97—
ine PILES )
drag coefficient ;EUtg
aCp
385
2U

en)
2 Bu
o)
oo
aCp

(8L
2U

3Cp
306

[ift coefficient (L/%pU2%S)




rol1ing moment coefficient (L/LpU?Sb)

aCyg
pb
Q(ZU)

acy

rb
B(ZU)

BCR

o

3Cy

aCy

3,

pitching-moment coefficient (M/ipU2Sc)
aCm
qc

a(ZU)

aCp
3a,
3Cm
dc
B(ZU)

aCq
3d,
coefficient of wing force normal to the airplane reference line
aCn
90
yawing-moment coefficient (N/ipU2Sb)
aCn
pb
B(ZU)
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Lr

72

2n
38,

%
35,
thrust coefficient (T/4pU?S)

mean aerodynamic chord

alrplane center of gravity

drag force

acceleration due to gravity (32.2 ft/sec?)
moment of inertia about the x-axis

moment of inertia about the y-axis

moment of inertia about the z-axis
product of inertia

fit error

l1ft or rolling moment

pUsp? _9Cg
4l yx pb
a(zu)

E!ébf._ﬁg&_
41 rb
XX —
B(ZU)



Lg
Lga

LSp

My

M§ e

NB

pusb 3Cp
214y 9B

UolLv

pu2sp 9Cg
21xx 383

pu2sb 9Cyg

length from c.g. to tail quarter chord

pitching-moment about the c.g.

pUsc? 3Cm
4] gqc.
Yy B(ZU)

3
puse (U Xm | ¢
Iyy 2 9u

pUsc Cm

gScz aCm
41y ac
YY n8C
a(ZU)

pu2Sc Cm
2lyy 3¢

mass in slugs

wing force normal to the airplane reference line or yawing moment

pusb? 3Cn
41,4 pb
35

pusb? 3Cn
4155 rb
35

puUSb 9Cn
21zz 9B

UoNy
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NS4

N§ -

Xde

74

pU%Sb 9Cn
2l,; 383

pu2sb 9Cn
2'22 36[“

rolling velocity
pitching velocity
yawing velocity
wing area

Laplace variable
thrust

time in seconds required for absolute value of transient short-
period oscillation to damp to one-half amplitude

airplane velocity

the control vector

equilibrium airspeed

perturbation from equilibrium airspeed

airplane weight

perturbation from equilibrium vertical velocity

the computed state vector




angle of attack
sideslip angle
aileron deflection
elevator deflection
rudder deflection
phugoid damping ratio
pitch angle

3.1416

density
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¢ rol} angle

P yaw angle
w”ph phugoid natural frequency

w”s.p. short period natural frequency

A dot over a quantity denotes the time derivative of that quantity.
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LONGITUDINAL GEOMETRIC

GIVEN VALUES OF THE STABILITY DERIVATIVES AND AIRCRAFT
CHARACTERISTICS THIS PRUGRAM PERFORMS THE FULLOWINGE

1) CALCULATE NON~DIMENSIONAL STABILITY UERIVATIVES
2) CALCULATE DIMENSIONAL STABILITY DEXIVATIVES

3) FORMS THE TRAMSFER FUNCTIONS, TF(S)IsN{S)/D{(SI
4) SOLVE FUR ROOTS OF D(S) AND N(S)

5) CALCULATE WMATURAL FREJUENCIES, OAMPING RATIOS, TINE TG DAme
TO ONE-HALF AMPLITUDE, AND SETTLING TIME

[

PRUDUCES INFORMATION NEEDED FOR BODE PLJUT CONSTRUCTION

THE DERIVATION OF THE EQUATIONS OF MOTION ON wHICH THES ANALYSIS 15
BASED WAS TAKEN FROM *DYNAMICS OF THE AIRFRANE®, BUREAU OF
AERONAUTICS REPORT, AE-61-411l.

THE ANALYSIS DESCRIBED ABOVE MUST MEET THE ASSUMPTIONS IMPOSED ON
THE EQUATIONS OF MUTIUN WHEN THEY WERE DERIVED.
THESE ASSUMPTIONS ARER

1) THE AIRFAANE 1S ASSUMED TO BE A RIGIU 8OOV.

2) THE EARTH 1S ASSUMED TO BE FIXED IN SPACEs AND, UNLESS
SPECIFICAMLLY STATED OTHERWISE, THE EARTH'S ATMOSPHERE 1S
ASSUMED TO BE FIXED WITH RESPECT TU THE EARTH.

3) THE MASS OF THE AIRPLANE IS ASSUMED YO REMAIN CINSTANT FOR
THE DURATION OF ANY PARTICULAA DYNAMIC ANALYSIS.

43 THE X~ PLANE IS ASSUMED TO BE A PLANE OF SYMMETRY.

5) THE OISTURBANCES FROM THE STEADY FLIGHT CONDITION ARE ASSUMED
TO 8E SMALL ENOUGH SO THAT THE PRODUCTS AND SQUARES OF THE
CHANGES IN VELICITIES ARE NEGLIGISBLE IN COMPARISON WITH TME
CHANGES THEMSELVES. ALSDy THE DISTURBANMCE ANGLES ARE ASSUMED
TO BE SMALL ENOUGH SO THAT THE SINES OF THESE ANGLES MAY B¢
SET EQUAL TO THE ANGLES AND T4E COSINES SET EQUAL TO ONE.
PRODUCTS OF THESE ANGLES ARE ALSO APPROKIMATELY ZERG AND CAN
BE NEGLECTED. AND, SINCE THE DISTURBANCES ARE SMALL, THE
CNANGE IN AIR DENSITY ENCOUNTERED BY THE AIRPLANE DURING ANY
OISTURBANCE CAN 8E CONSIDERED TO BE ZERJ.

&) DURING THE STEADY FLIGHT CONDITION, THE AIRPLANE 15 ASSUMED
Ta oF FLYING WITH WINGS LEVEL AND ALL COMPUNENTS OF VELOCITY
LERO EXCEPT U 5J8 Co W SUS O = O BECAUSE THE STABILITY AXES
WERE CHOSEM AS THE REFERENCE AXES.

71 THE FLOW IS ASSUMED TO B8E QUASI~STEADY.

ICHECK{EE) IS A SUBSLRIPTED VARIABLE NMICH PERMITS THE PROGRAMMER
TO RtAD N THE VALUE UF A PARTICULAR STABILITY DERIVATIVE RATHER
THAN HAVING THE PROGRAM CALCULATE IT. JCHECK(1) = 1 INOICATES
THAT CL IS READ IN. EACH OF THE 21 DERIVATIVES HAS A SUBSCRIPT
NUMBERS  CD—2¢ CM-3, CT—%y CLA-5y CUA~6, CMA=T, CLOA-8+ CODA-9,

CMOA-10y CLQ-11, COQ-12, CMQ-13, CLOE~-14, CDDE-15, CMDE-16, CLU~1T,

COU-18, CMU-19s CTU-20, CTRPM=21s EACH DERIVATIVE T4AT IS READ IN

1S LISTED ON A SEPARATE CARD AFTER THE DATA CARD FOR ICMECK(IID.

RHO ~ THE DENSITY DF AIR AT THE ALTITUDE WHICH THE AIRPLANE IS
FLYING IN SLUGS/FTee3,

U - THE SPEED OF THE AJRCRAFT IN FEET/SECOND.

MS = MS IS THE MASS JF THE AIRCRAFT IN SLUGS.

1YY - THE MOMENT OF INERTIA ASOUT THE Y AKIS IN SLUGS—FTee2,

CO~NF PP BN~
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PROGRAM

THRUST = AIRCRAFT THRUST IN POUNDS.
ZJ - THE PERPENDICULAR DISTANCE FROM THE CoG. YO THE THRUST LINE,
PASITIVE FOR THE C.G. ABOVE THE THRUST LINE.
GCOSGM AND GSINGM ARE THE PRODUCTS OF THE ACCELERATION DUE TO
GRAVITY (ASSUMED = 32,2 FT/SEC®®2 FOR THIS ALTITUDE RANGE) AND THE
COSINE AND SINE RESPECTIVELY OF YHE INITIAL FLIGHT PATH ANGLE,
GAMMA; (USUALLY ZERQ FOR LEVEL FLIGHT ).
CASXZ -~ THE COSINE OF THE ANGLE MADE BETMEEN THE THRUST AXIS AND
THE WIND AXIS.
SEINXZ - THE SINE OF THE ANGLE MADE OETWEEN THE THRUST AXIS ANG THE
WIND AXIS,
S = WING AREA IN FTee2,
ST = HORIIONTAL TAIL AREA IN FTes2,
B - WING SPAN IN FEET.
BY ~ HORIZONTAL TAIL SPAN IN FEET.
EFF - EFFICIENCY OF THE HORIZONMTAL TAIL.
CHE ~ MEAN AERODYNAMIC CHORD OF THE ELEVATOR.
TR -~ TAPER RATIO OF THE WING.
TRT - TAPER RATIO OF THE HORIZONTAL TAIL.
CL20W ~ THE 2-D LIFV CGEFFICIENT OF THE WING.
ITAIL ~ INCIOENCE ANGLE OF THE HORIZOMTAL TAfL.
CLAZDW = 2-0 LIFT CURVE SLOPE JF THE WING PER DEGREE.
CLA20T = 2-D LIFT CURVE SLOPE OF THE HORIZONTAL TAIL PER OEGREE.
COPIE — AIRPLANE PARASITE DRAG COEFFICIENT.
CDAZ0W ~ 2-0 DRAG CURVE SLOPE OF THE WING PER RADIAN.
MPHA — WING ANGLE OF ATTACK IM DEGREES.
IMING -~ INCIOENCE ANGLE OF THE WING IN DEGREES.
LT ~ LENGTH FROM THE C.G. TO THE QUARTER-CHORD OF THE HORIZONTAL
TAIL IN FEET,
LTl - LENGTH FROM THE WING QUARTER-CHORD Tu THE QUARTER-CHMORD OF
THE HORIZONYAL TAIL IN FEET.
MA — CHORDWISE OISTANCE FROM THE Co.G. TO THE WING AERDOYNAMIC
CENTER IN FEET (POSITIVE FIR THE L.6. BENIND THE wING AJCo).
LA = VERTICAL OISTANZE FROM THE C.Ge TO THE WING AERIDVNAMIC CEM-
TER IN FEET (POSITIVE FOR THE CoGo BELOW THE WING A.Cude
LB ~ LENGTH OF THE FUSELAGE IN FEET.
WRUS - MAXIMUM WIOTH OF THE FUSELAGE IN FEET.
XFUS ~ DISTAMCE FROM THE FUSELAGE NOSE TO THE WING QUARTER-CHORD
IN FEET.
XCG = CHORDWISE DISTANCE FROM THE CuaGo TO THE WING QUARTER-CHORD
IN FEET (POSITIVE FOR THE CuGe AMEAD OF THE WING QUARTER-

CHORD) «
IT ~ PERPENDICULAR DISTANCE FROM THE C.Ge TO THE THRUST LINE
(POSITIVE FOR THRUST LINE BELDW THE CuGale
SELEY ~ AREA OF THE ELEVATOR IN FT®e2,
AR = THE WING ASPECT RATIO.
ART - TME HORLZONTAL TAIL ASPECT RATI1O.
CH = THE MING CHORD.
CHT -~ THE HORIZONTAL TAIL CHORD.
TAU -~ THE CORRECTION FACTOM FQR INDUCED ANGLE OF THE WING.
TAUL -~ THE CORRECTION FACTOR FOR INDUCED ANGLE OF THE WING FOR TR
= 140,
EL ~ THE INDUCED-AMGLE SPAN EFFICIENCY FACTOR OF THE WING.
CLAW ~ THE 3-0 WING LIFT CURVE SLIPE PER RADLAN.
TAUT - THE CORRECTION FACTOR FOR INUUCED ANGLE OF THE HORLZONTAL
TAILe
TAULT = THE CORRECTIUN FACTOR FOR INDUCED ANGLE UF THE HORIZONTAL
TAIL IF TRT » 1.0.
E1T - THE INDUCED-ANGLE SPAN EFFICIENCY FALTDR OF THE HOREZONTAL
Tall.
DELYA — THE COMRECTION FACTOR FOR INDUCED URAG OF THE WING.
DELTAL -~ THE CORRECTION FACTOR FOX INDUCED ORAG OF T4E WING FOR
TR = 1,04
E = OSWALD'S SPAN EFFICIENCY FACTOR OF THE WiNG.
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CLW - THE 3~D MING LIFT COEFFICIENY,
OM - THE DOWNWASH ANGLE AT THE HORIZUNTAL Talle
ALPHAT ~ THE ANGLE OF ATTACK AT THE HORIZONTAL TAlL.
SRATIO = THE RATIO OF THE ELEVATOR AREA TO HORIZONVAL TAIL AREA.
DADOE —~ THE ELEVATIR EFFICLENCY FACTOR; CHANGE IN THE TAIL ANGLE
GF ATTACK DUE TO ELEVATOR UEFLECTION.
CLAT - THE 3-D HORLIUNTAL TAIL LIFT-CURVE SLOPE PER RADIAN.
CLT ~ THE 3-D HURIZUNTAL TAIL LIFT COeFFICIENT NEEDED FOR EQUILI~
BRIUM.
ALPHAR = THE ANGLE OF ATTACK REQUIRED TO ACHIEVE THE NECESSARY
TAIL LIFT CIEFFICIENT,
OALPHA = THE EFFECTIVE ANGLE OF ATTACK WWICH MUST BE SUPPLIED BY
THE ELEVATORX TO OBTAIN EQUILIBRIUM,
DELTAE « THE ELEVATUR DEFLECTION REQUIRED FOR EQUALIURIUM.
CL - TOTAL 3~0 AIRPLANE LLIFT COEFFICIENT,
€D = TOVAL 3-D AIRPLANE DRAG COEFFICJENT,
CH - TOTAL 3~D AIRPLANE PITCAING MOMENT.
CY ~ TUTAL 3-D AIRPLANE THRUST CDEFFICIENT,
DEDA = FHE CHANGE IN OUWNMASA WITH MING ANGLE OF ATTACK.
CLA = TOTAL 3-D AIRPLANE LIFT CURVE SLOPE PER RAOIAN.
CDA - THE 2-0 AJRPLANE DRAG CURVE SLOPE PER RAUIAN.
CMAN = THE CHANGE IN WING PITCHING MOMENT JUE TO ANGLE OF ATTACK
PER RADIAN.
CMAT - THE CHANGE IN HOURIZONTAL TAIL PITCHING MOMENT OUE TO ANGLE
OF ATTACK PER RAUIAN.
XLis - THE RATIO OF THE DISTAMCE FROM THE FUSELAGE NJSE TO THE WING
QUARTER=CHORD TO THE TOTAL FUSELAGE LENGTHS
KF ~ AN EMPIRICAL FACTOR FOR FUSELAGE OR NACELLE CUNTRIBUTIONS TO

CHA.
CHMAFUS - THE CHANGE [N FUSELAGE PITCHING MOMENT DUE TO ANGLE OF
ATTALK PER NRADIAM.

CMA — TOTAL AIRPLANE CHANGE IN PITCAING MUMENY OUE T) ANGLE OF
ATTACK PER RADIAN.

CLOA ~ CHANGE IN AIRPLANE LIFT COEFFICIENT WITH RATE OF CHANGE
OF AMGLE OF ATTACK.

CODA ~ CHANGE IN AIRPLANE DRAG CUEFFICIENT WITH RATE OF CMANGE OF
ANGLE OF ATTALK.

CMNDA ~ CHANGE IN AIRPLANE PITCHING MOMENT COEFFICIENT WlTH RATE OF
CHANGE OF ANGLE OF ATTACK.

CLQ - CHANGE IN ARRPLANE LIFT COEFFICIENT WITM PITCHING RATE.

COQ « CHANGE [N AIRPLANE ORAG CUEFFICIENT WITH PITCHING RATE,

CMY — CHANGE IN AIRPLANE PITCHING “IMPNT COEFFICIENT WITH PITCH-
1MG RATE.

CLDE2D - THE 2-D ELEVATOR &FFECTIVENESS.

CLDE = CHANGE IN AIRPLANE LIFY COEFFICIENT oITH ELEVATOR DEFLEC-
TION PER RADIAN.

CODE -~ CHANGE IN AIRPLANE ORAG CIEFFICIENT WETH ELEVATOR DEFLEC-
TION PER RADIAN.

CMDE - CHANGE IN AIRPLANE PITCHING MOMENT COCFFICIENT WITH ELEVA-
TOR DEFLECTION PER RADIAN.

ClUe COUy CMU, CTU - CHANGE IN LIFT, DRAGy, PITCHING MOMENT, AND

THRUSY COEFFICIENTS wWITH PERTURBATION
AIRSPEED.
CTRPA ~ CHANGE IN THRUST COEFFICIENT WITM ENGINE SPEED.

ALTHUUGH THE PROGRAM DOES NUT CALCULATE THE STABILITY DERIVATIVES

DUE TQ FLAP DEFLECTION THESE DERIVATIVES CAN BE CALCJLATED AND
THEN READ ENTO THE PRUGHKAM AS CLDE, CDDEs AMU CMDE.

THE FOLLOWING CARDS {MPLY THAT THE PRUGRAM 1S EXECUTED IN OOUBLE
PRECISION.

INPLICIT REAL®BIA-H,I-L)

129
130
131
132
133
134
135
136
137
138
139

161
142
143

145
146
147
148
149

151
152
153
15¢
155

157
158
159

161
162
163

165
166
167

16%
110
171
172
173
174
175
176

178
179
180
181
182
183

185
186
187
188
189

19
192

REALSE MSpTYV oMU MU sMON s MAsMINGNUS s NASoNTHS ¢ KGA I NgKL ¢ KROOT s KKK 3K Dy
SUMeNWSILT oL T1 o IMING sLByKF, ITAIL

COMPLEX®LS P,TST

COMMUN WNSP 5P o T1ZSP s TOSSP ywNP oZP ¢ TI2P2TO5P,WF {210 «RRDELO D4 RANI
SLONoRIDELOVSRINCLIO) «AMPRIZL) o PHASEL 2L ) sACCINCYULECZL) o AMPRDB(21),P
SHOFGL21 ) o KGALN

COMMIN |

OIMENSION NUSIS) yNASIS) sNTHSI51,DS{6)sROOTRELOIsROUTI(101,CL5) exCH
3413 QUFLE3 ) 4QUF2LI3)eRRTIZ)4RR2TZD9RTLL2V5RIZ(I2D,CC14) o RRI3BI,COFFT LG
SHeRIEN) G XREINXE(3 D4 COF(3DGREC2I,RIMI2I ¢ ROUTLLY yCUFFL2Z) g KRRL 21 ) o N
$545) s ICHECKL 21) +Plo)

READ(1 100 ICHECK(11}511=1,21)
100 FORMAT(2111)

READ(Lo 101 PRHOsUeMS o 1YY o THRUST ¢ ZJ # GCUSGM GO INGM ¢ COSXZ o SINKZ ¢ S1 5T 48
$¢BT ¢EFF oLHEy TRy TRTy CL2DwWy I TAIL, CLAZDMyCLAZDT yCOPLE, CIAZOWy ALPHA I W
SINGoLT oL T1oXAeZALBWFUS o XFUS aXLS 42T+ SELEY

101 FORMATI8F10.5)

AR=B**2/5

ART=0Foe2 /ST

TF(TRalTo040oURe TR.GT o Lo OIWRITE (322000 TR
200 FORMATU//s1Xy0meesn TR = *,F7.4y' 1S QUTSIDE DESIRABLE RANGE OF 0
$a0 T 1.0 WHEN CALCULATING TAU Ok DELTA ®esuss,//)
IF(lARCLTa3.04ANDTR.EQe120)eOR (ARG GTe12:0aANDTRoEJ1-0) INRITE(D
$+201 ) AR
201 FORMAT(//¢lX tunsms AR = ¢,FT,4,* 15 OUTSIDE DESIRABLE RANGE UF 3
$.0 TO 12,0 FOR TR = 1.0 wHEN CALCULATING TAUL DR DILTA]l oswant,z/
1 1)
IF{TR.EQ.1.0160Q TO 1
TAU=65260 O¥TRSS1 333036, SHTRUELZ2455T08, 30TRE®L L ~A0275,92TRE% 10550
$22.8%TR**9+] 34075.0%TR*#3-1 20452, (»TRe*&T+T71152, 4uTRE®6-246169.6 TR
$25064910,63%TR**4-50]1 , L 9¥TU #3427, 1 9664TR**2-1 . 311550 TR¢0,1 70212
El=1.0/(1.00TAU)
GO TD 2
1 TAUL=0.000029711 5%AR**4=0a0008LLT4T*AR®#I*D U0TLTLTHAR®S2-0. 002988
$5InAR*1.07T35
El=1.0/TAUL
2 CLAW={5T7.3%CLA20WI/ (1. 0+CLAZDNEST 43713, 1ALL*EL*AR))
IF(TRTeLT40.0eORTRToGTo 1o OPMRITEL3,202) YRY
202 FORMAT{(//7:1Xo?#s&ex TRY = ¢,FT,4,* 15 OUTSIDE DESIRABLE RANGE OF Q
$20 T2 1.0 WHEN CALCULATING TAUT swesss,//)
TEOCART LT e300AND. TRT e €001 00)eIRe (ARTGTol 2404 ANDTATLEQe 1a O) JWR]E
STE(3,202)AR
203 FORMAT(//7¢1X " %0nus  ART & ¢,FT.4,° [5 OUTSIVE DESIRABLE RANGE OF
$340 TO 1240 FOR TRT = 1.0 WHEN CALLULATING TAULT ®musws,//)
IF(TRT.EQ.1.0)G0 Tu 2
TAUT=65264 0OSTRT#8]13~33936. SSTRT O] 2465708, ISTRT*N]1 1 «40275, FETRTO %]
$0-55022 . 8%TRT#%951340T75, 00 TRT#RE-128452, 08TRT#* 7471152 44TRT *xp-24
$1696¥TRTEP52491 0. 635 TRTEH4—541, LICTRT*¥3¢2 7, 1 F66*TRT 921,311 55*T
$RTe0. 170212
ELT=1,0/{1.0+TAUT)
GO TO &
3 TAU1T=0,0000297115*ART**4~0.000811747*ART#*3¢0. 007171 T#*ART#* 20,00
$298853%ART+1.07T39
ELT=1l.0/TAULT
& IF{TR.EQ.1.00G0 TU 5
DELTA=2. 4863 THTR#46~9.29906¢TR&45+1 4 . 06F28TR*%4~11. 11 99*TR** 3+ 5,01
SAGIBTRI2<]1, 262620TR+D. 141122
Ewl.0/{1.0+DELTA}
GO TO &
5 DELTAL=~0.0000143113%AR®#340,00001 53924 *ARS 240,01 L3F6F0AR®, 988661
E=1.0/DELTAL
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& IFLICHECK{10.EQe1)60 TG 7
CLw=CL20W/ 11,002,070 )
DW= 20.0) SCLNSL(§1.07TRI$0,.3)/(ARSS0, T25119( 3, O0CH/L T1) €20, 25
ALPHATaALPHA-] W ING*ITALL-0N
SRATID=SELEV/ST
1F(SRATIOMNT.0.0,0RSRATIOLGT 0TI WRITE(I1204)SRATIO
204 FORMAT(// iK 000000 SRATID = *oFéady? 1S QUTSIOE DESTRAME AANGE
$SOF 0.0 TO 0.7 WHEN CALCULATING DADOE #vesws,//)
DADOE 2]+ 7949 SRATIO085- 45, T4 S SHAT [ 0604336, 934 TSRATIO®63~ 14,259
SESRATI0*#2¢3,TOS518SRATIO-0.00005T781S
CLAT=(5T.38CLA2DT I/ {1 . O¢CLAZOTSST .3/ (3. 1414 %E1TEART) )
CLY=CLUSXASS /(L TOSTSEFF)
ALPHAR=CLTZ{CLAY/5T.3}
DAL PHAmAL PHAR~AL PHAT
DELTAE=DALPHA/DADDE
CL=CLMeCLTS{ ST/SIOEFF
Ga YO 8
READ(1,102)CL
FORMAT(F10.5)
TFLICHECK(2).€Qe1060 TO 9
COmCOPIESCLE®2/{ I 1 41 6RESAR]
GQ TO 10
9 READ{1,102)CD
10 IF{ICHECK(3F,EQ.L1G0 YO 11
Ci=({ THRUST /( 0. S*RHOPY RS20 ) 1 8 (2T/CH)
G0 10 12
11 READ{1,102)CM
12 IF{ICHECK(4).EQ.1)60 TO 13
CT=THRUST/{0. 5*RHDeUSO295)
GO TO 16
13 READIL+10Z)CT
14 IF(ICHECK(S5).£Q.10G0 TO 15
CLAMS (57, 30CLA20W) / {1 - 0¢CLAZDWEST ¢ 3/ (3. 14169k 19AR) }
CLAT={ST,38CLAZDTI/{1.0¢CLAZOTEST .3/ (3. L4L6OELT#ART })
DEUA=20.08{CLAN/ 5T 3N 8{ ({1.0/TRI*$0,3)/AR®S0, T25) %13, 0SCH/LT 1) #¢0.
325
CLA=CLAN
GO0 10 16
15 READ(1,102ICLA
16 IF{ICHECK(6).EQ.11GO TO 17
COARCDAZONSZOCLOCLAZ 3. 14)60ESAR)
60 10 18
17 READ{1,10Z)CDA
18 IF{ICHECK(T) .EQ.1JG0 TU 13
CHANSCLA®( (1 06(2,08CL7 (3. 1416SECAR) IS (L ALPHA=INING) /574 30 ¢LD/CL AN
SE(XAZCHI*{2.09CL 713,141 6%EARN—{ ALPAA=TWING } /574 3=CLACLA IS (ZA/CHID
CMAT=CLATS(L.0-DEDA)®(ST/SIS(LT/CHEFF
XLB=XFUS/LB
IFIXLBoLT 40.08.0RXLE 6T 0 65I8RITE(3,203)KL0
205 FORNATI//41X *esmms  XLD = *oFb.5¢° 1S GUTSIVE DESIRAME RANGE OF
$0.1 TO O.05 WHEN CALCULATING KF wesest,//)
KFe-19,65580KLBR04+50 , 34650XLBOU3=26,34TINKLIRNZ4T 4 T29FOXLD~0. 404
$064
CHAFUSAKF ouFUS anFUSeL 8/ { S8CH]
CHA=C RAW+CMAF US—CHAT
&0 10 20
19 REAO(1,002)CNA
20 TF{ICHECKIA}.EQ.11G0 TO 21
CLDA=Z, OSCLAT#DEDM (LTI /CHIS{ST/S ) VEFF
GO TO 22
21 READ{1,102)CLOA
22 IFUICMECKISN.EQ.2160 TO 23
CODA=0.0
GO TO 24

-
o
@ N~

23 READ(14102)C0DA
24 JFUICHECK (L0).EQ.LIGO TO 25
CHOA®=2 OSCLATSOEDA®(LT/CH) & LTL/CH) @ (5T /S %EFF
G0 TO 26
25 READ{1,102}CHDA
26 IFCICHECK (M).€Q.1)GO TQ 27
CLUR2, 081 XCG/CHI OCLAP L ONLTACHI*CLAT 4 ST/S J SEFF
60 TO 28
27 READ(1,102)XCTW
28 IF{ICHECK(12)40Q41060 TO 29
C0Q=0.0
GO 70 30
29 READ(1,1021C0Q
30 IF(ICHECK(13)¢EQ.1)G0 TO 31
::a;az;guucwcn-znonu XCGISCLA=20%(LT/CHISSZOCLATS( ST/S JSEFF
31 READ(1,1021CHQ
32 1F(ICHECK (14),EQ.01G0 TO 42
CHECHT »CHEZCHT
LF (CHECHT oLT 00400 ORaCHECHToGT o 1o 0 JMR T TE( 34206 FCHECHT
206 FORMAT(// 1Ko s00me  CHE/CHT = ¢4FPo&¢® IS OUTSIDE DESIRABLE RANGE
$ OF. 0.0 TO L.O WHEN CALCULATING CLOERD wweenr,//)
CLDE2Dw~0,0580767%( CAE/CHT 1 ua400, 166 LOLS (CHE/CHT }m3-0. 1698230 (CHE
$/7CHT ) 64240, 194084% { CAE/CAT ) =0,0020203)
IFLARToAT «0u0s ORART o GY o 104 QINRI TE( Do 20TIART
20T FORMAT(//41Xo'o0aen  ART = ¢ FT.4y' IS DUTSIVE DESIRABLE RANGE OF
$0.0 TD 1Ge0 WHEN CALCULATING CLOF wasast,//)
AD2ZDix %, 658423 (CHE/CHT 1804~ 104 SETIN| CHE/THT 1 #8349, 4752 L& LCHE/CHT I o0
$2-4, 099694 (LHE/CHT ) -0 40432953
IF{AD204GEe=0s1160 TO 33
IF(ADZD.LT +~0ul « AND.ADZD.GE. TO 34
1F(AD20.L «AND. TO 3%
IE{ADZDeL T4 va 36
IF(AD20.LT=0uhe AND.ADZ0.GE4=0. 5160 TO 37
TFIADZOeLVe~0u5 e AND. ADZDGEL-0.6160 TO 38
1F(AD204LT v=0064 ANDADZD.GEo~C. 71 GO TO 39
TFIADZOWL T o=007 o ANDADZDoGE +~0. B3 TO 40
ADL =04 0000255224 #AR TE®4=0, 00080 TOTRARTSS 340 . U0FISASGAARTEU 20, OA BT
$466%ART+1 412006
AD2%1.0
AD=ADL+{AD2=-AD1 1 #(AD20~ (=04 8) 1 /(=021
GO TO 41
33 AD==00 0000580764 %A% THSS ¢0y 0020TTAASART#¥ 4= ARRAFOISARTHE3 40,203 T8
$ISARTS®2-0.80271 54ART+2, TT199
GO TO 41
34 ADL=-0.0000580T64%RT#¢ 540, 00203T 4R PANT RS 4~ 0, 0204903 *ART #4300, 2037
$83FART ##2-0, BO2TL5%ART+2. 77199
ADZ==0.U00858209ARTER 340, (22474 AR TE8 204 20GTOPRART¢1. 8L 71T
ADSADL+ (ADZ=ADL) #(AD20={~0u1) 1 /1Dy 1}
GO TU )
15 AD)=-0.00085620F*ARTE 340, OZLATZANAR TE 20, 206TOPRART+1. 8LTLY
ADZu 04 0001I2IH4PART 4= AUF T4 FR AR T SRR 604 0450323 0AR a0 200 209244
$*%ART+1,.6981l6
AD=AUL* (ADZ-ADL b *{AI20~1~0u 2}/ {wOy )
GO TO 41
36 ADL=(, 0001329 H4mART $24-0, 003943062 ART #2360, 0430I2IMARTERZ~0. 245244
SSART L, 69816
ADZ=+0. 00000 724251 AR T# &4 +(1e 100 ¥SRIPIART I 50, 00ZESI 6SUMT0440 .0
$1508820ART83-0,021 44SCAR TOA2-0, LORGANUART#1 14 T4Z9
AD=ADL+{ AD2-ADS FS(ADZD-{=043) $/{~041)
GO TO &1
37 AQL=-0,00000724351%ART*#640,0002352 39SART #0450, 0020853 6S0ARTE 2440, 0
$1500820ARTS43-0, 021 46 540AR T ¥ 20, LOB6ESSART #1 o4 7429
AD2 == 000001 16LSART 095 40, (OO 4IATITHART 4840, 0061 KL 6 AR TS 40,049
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S6TZACARTO22-0, 13491 TPART+1.41220
ADmADL*(AD2-ADL} ®{AD2D~{=044) )/{=0.1)
GO TO &1
38 ADL=-0,00001 1681 AR T¢45+0. 0004305 STCARTS %40, 0062181 ¢SARTE 23 40,045
SOT23%ARTE$2-0, 18491 THART#Lo 41226
AD2u=~0, 0000073 TOB4ART #2540, 00030 TIS2#ART %84 ~0, 00489224 %ART #9340, 03
$803040ARTS62-0, 154526 %ART+1,32116
ADmAD]1 ¢( ADZ-ADL ) *{AD2D~(~0.5))/({~0.1)
GO T2 4)
39 AQL=-0,0000073708%ART #* 540, 000307952 *ART $84-0.0048922 48ART#2340,03
$80384%ARTS82-0,]154526%ART+1,32116
AD2=0, 00000243494 %ART £ 44~ 0. 00025541 SFART6340.005T7T08 AR TE 82 0. 048
$T234*ART+1,16569
AD=AD1+{AD2-AD1 ) #{AIZD-(~0a86) }/({~0s1)
GQ TO &l
40 AD1=0. 000002434948ART 884-0, 00025541 SHART #9340, 0057 T62¢ARTH42-) 048
$T72344ART+1, 16569
AD220.0000255244%AR T %4~ 0; 000BDTOT*ART #9340, 009IS 254 4 ART #2420, 0487
$466%ART+1.12006
AD=AD1+{AD2-AD1) #{ADZD=~(~0a T} }/{~0ul]
41 CLOE=CLDE2D®(CLAT/(CLA20T) I*ADS({ST/S ) aGFF
CLIN=CLDE
GO Ta 43
READ(1.,102)CLDE
CLINSCLOE
TF{ECHECK(1S).EQa2)GO TO 44
COOE=0.0
CODIN=C DOt
GO TO 4%
READ{1+102)CDDE
COIN=CODE
IF(ICHECK{161.EQ. 1160 TO 46
CMOE={~LT/CH)I®CLDE
CHMIN=CHOE
GO TO 47
465 READ{1,10Z)CMDE
CMIN=CNDE
IFCTCHECK(1TH.EQ.1160 TO 48
CLu=0,0
GO TO 49
48 READIL,L1021CA0
49 1F{1CHECK(L).EQ.1)GO TO SO
CouU=0,0
60 TO 51
SC READ( 1y LOZICDM
51 IFUICHECK{19).EQ.1160 TO S2
Chu=n,0
60 TO 53
52 READ(1,102)CMW
53 [FIICHECK(20).EQal1G0 TQ 54
LTU=0.0
60 TO 55
56 READ(L,102)CTU
55 IFLICHECKI21).EQ.1 060 TO $6
CTRPM=(Q,.0
GO0 TO 57
5& READ(1,102)CTROM
ST WRITE(34200)RIN0+UsMSe 1YY, TMRUST (ZJ ¢ OCOS6M, ST NEN,COSKTe S ENNI
208 FORMAT(15(/) y9Rs104(%2%) /9y, 112X,%8°,/9X,* 39X, *PERTINENY Al
SRPLANE CHARACTERISTICS® ¢30X " %9, /0K, P %9, 39K ,34{ *~¥) 39N P40, /38, ¢8
S0 pl12Ke Y™ /Ny R L 14K, DENSITY (SLUGS/FTE3)1,5X, @0 JFL0.5,10Ky 'Y
SELUCKTY (FT/SEC) 49Xy *=9,F10o5010Ks" @9, /9K, 8%, 14X, " NASS (SLUES)*
$olaN g0t g FL0.50L0Ke P IYY (SLUG-FTOS2)?,10K, 0 F10.5,16K,%87, 79X
$0'%0 s 10K ' THRUST (POUNDS)® 411K, *m?3F10.5010Ks%2J (FT) 1 ,10K,0ar ,F

]

~
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w
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H
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w

&
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o

LYo Na X R WYt

B10.5024K, 0% /9N, "0 14N, COCOSIGCANMADL (FT/SEC/SEC) Y, 1X,?
$5010Ky *AYSIN(GAMMNA) (FT/SEC/SEC)® p1R,%a9 ,FL0. 5, 14K 9%
S4KePCOMUXTI® gL 9K =, FLOL54 LOX, *SINEXZ) * 519K, oFLO.Sel4X 400)
MRITE(32209) S0 STeB.aT ,CHoCHT o ARgART ; TRy TRT, ALPHA ALPHAT, LW ING, ITAT
L

8
209 FORMATIOX,%¢* (112Ke 100 ; /9K, '8 9, 14X, *WING AREA (FTS92)¢,9X,%=4,F]

80.5,10K, *HORZ, TAIL AREA (FTO82)0 (3K, %mt F]005¢10K, "0, /0K, 001,)
S4KPWING SPAN (FTH® 12X *eF10e50 10X, "MHORZ. TAIL SPAN (FT)¢,6K,
s 1FLOCS P 1AX 0 379K S84, 14K, *NING CHORD (FT)° s11Ke"=7,F10.5,10
$Xe"HORZ. TALL CHORD (FY)',5X TeFl0eSy 1aKe t 0 /ON, P00, L 4K, 'WHING
SSPECT RAVIO® 49X s""* oF10.5,10K,*HORLs TAIL ASPECT RATIO®,3X,*
SoF10.5, 14K, 2% /0K, "0, 14K, "WING TAPER RATIO®,10X, F10.
SYHORZ. TAIL TAPER RATI0®,4X 2F1De5o1AKo" 20 /N, 00 14X,
SLPHA {DEGREES)® 902 FL0e5910Xs *TAIL ALPHA (DEGREES)® & ’
$.5016K,080 /9K s LoX, *TMING (DEGREES)® o11X3°=*3F10,5,10K,*ITAIL
S(DEGREES)® ¢L1Xy®: +F10059l4Ke004)

WRITE(3,210) OueOEUA s DEL TAE , SELEV L EFF o CHE 3 CLAZDW s CLAZOT 4 COP 1€ ,COAZD
$ueCL2DN

»

210 FORMAT{OX*#7 o 14X, *DOWNMASH ANGLE (DEGREES)®o2Xe"'=? ,F10.5,10K, 00U

SNMASH/ MPHAY 412K 1FLOS 14K, "%, /oKy *®0 , 14X, *ELEVATOR ANGLE (DE
SGREES)® p2Xp " =7 3FL0. 5, LON, *ELEVATOR AREA (FT®02}°,5K, =% ,F10,%,14X,
S0, /9K W0 ey TAIL EFFICIENCY® y11Xo*®*,FLl0.5,10Ky" ELEVATOR CHOR
SD (FTIO TR =2,F10.5,16K,° 0%, /9X 114Xe°2-D WING CLA® 186X, %a",
Sy10K, *2-0 TAIL CLA® 14X, F10.5, Ky #1894 /9Ky 14X, "CDOPIE*
"9 F10.5+10K, %2 MING CDA® p14X oFl0.5¢14X (¥4 1AL AR
$14Xy*2-D WING CL®415Xs"m?3F10.5,61X, %)
WRITE({39Z1L)LBeWFUS LT oLTL o XAyZA¢KFUS e XCHoLT

211 FORMAT(9X, ®® (L12Ko 087 /9K 49 ,51K, *DISTANCES® » 52Ke* %% 3/9K, 987,112

SRo'%t o /IR S X, "LENGTH OF FUSELAGE (FT)*,11 Fl0.5¢10Xs*WIDT
$H OF FUSELAGE (FT)0,12x PaF10s506Ks "0 o /INy " ® L8Ky ' Cabe TO TAIL
SQUARTER-CHORD (FT)*,3X, *F10.5, 10X+ "WING TO TAIL QUARTER-CHORD (
SFTIIINy = F10a506Ke" Y o /IR 183 06Xy 'CaGe TO WING AuCo (CHORDWISE) {
SETIY ) 1K't Fl0.5¢10X,*CoGe TO WING AeCo (VERTICALD (FT)®o2X,
SLO.Ss6X "1, FOKo " #%46Xe *NOSE TO WING QUARTER=CHORD (FT)',3X
$0.5510X9*CuCe TO WING QUARTER-CHIRD (FT)%¢3Xe0u®,FL0.S,6Xy
TeFLl0e5.61Xs " 5% /9K, "

s 28Xy *°CoGe TO THRUST AXIS (FT)*,10X,*
2Ky 0%t /9N, L 1ML wt )}
WRIYE(3,212)

212 FORMAT(0LY 35(/) 92Kp128( 8% ) 3/ 92Xe "% (126K, "%,/ 42K, "9 ,46K; *LINGI

STUDINML STABILITY VERIVATIVES® ya6K,* 90,7 ,2K, 18
S0 2K RN L 26K, W o/ 2K VB0 126X, 000 )
WRITE(34213)CL sCLA,CLDA 4CLQyCLDE y CLUSCT »CO, COA»CDDALCDQ, CODE 4 COU,C
STUSCMoCMAoCRD AL CHQy CHDE o CHU, CTRPM

JrlbXytw

213 FORMAT(2Xo128("87) /2Ky "% J 126K "8 3/ 32K 45 04X "CL #° o FB. 4y 4Ko *CL

SA 31 FBaeshX ' CLDA =7 FBLA,4K,°CL2Y oFlL4, 4
S'CLU WFB.4 04X, ' CT w0 FB.h oK, PR o/, 2K, 40, 4X," CO F8.4,4X,
$PCOA =% FALA 4Ky "CODR =% FBo4o8Xo'COQ #* ,FB.6,6X,"COUE =9, FBoboaN,
$COU ' JFB.4o4X,°CTU b LI IT FILATYAY: PUL LIPS PRI I TPTT MYV 39
SOTMA =9 FRA X, "CMOA =% FB.4,4Xs ' CHQ =P Fll 0,4X, CHDE =%,F8.4,4K
Sy'CME =% FO 4o aN "CTRPM & JF8, 40K %%,/ 2K 9%, 126X, "%,/ 2X,128¢
$008) 271

LCOUNT=Q

LCOUNT IS A COUNTER WWICH PREVENTS MUWLTIPLE CAMLCMLATIONS OF THE
CHWARACTBRISTIC EQUATION.

THE READ STATEMENT BELOW IS THE 1NPUT FOR THE YARIADLES ENSLAINED
BELOW,.

58 READIL¢103JK o NUMER ¢ ALC
103 FORMATI213,E14.7)

TF(NURER . EQ.0)CALL EXIT
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CLIN, COIN, AND CMIN ARE THE STASILITY DERIVATIVES QUE TO CONTROL
SURFACE DEFLECTIONS. CLIN [5 EITMER THE PARTIAL OF CL WITH
RESPECT TO ELEVATOR JEFLECTION OR FLAP DEFLECTION. THE VALUE OF «
| DETERMIMES WHETHER 1T IS COMCERNED WITH FLAPS OR ELEVATOR.

"IF K IS GIVEN THE VALUE 1 THEN CLIN, COIN, AND CHIN ARE PARTIAL
DERIVATIVES WITH RESPECT TU ELEVATIR DEFLECTION. IF <=2 THEN THE
PARTIALS ARE TAKEN WITH RESPECT TO FLAP DEFLECTION.

NUMER DEF INES WHICH TRANSFER FUNCTIDN WE ARE INTERESTED INg (Ue
ALPHA,THETA,AND W), NUMER=1 GIVES VARIATIONS N Uy NUMER=2 GIVES
VARIATIONS IN ALPHA, NUMER=3 GIVES VARIAYIONS IN THETA, AMD
NUMER=4 GIVES VARIATIOMS IN W

THUS, FOR EXAMPLE. IF K=2 AND NUMER=2 THE TRANSFER FanCTION wiLl
BE VARIATION IN ALPHA DUE TO DEFLECTION OF THE FLAPS.

ACC 15 THE ACCURACY USED THROUGHOUT THE PROGRAM TO COMPARE TwD
NUMBERS TQ SEE IF THEY ARE SUFFLCIENTLY CLOSE.

IT SHOULD BE MOTICED THAT THE PROGRAM IS SET=UP TO CALCULATE THE
DIMENSIONAL STABILITY DERIVATIVES AND THE DEMOMINATOR POLYNOMIAL
ONLY ONCE; THEREFOKE, THE VALUE DF X SHOULU REMAIN CONSTANT FOR
A PARTICULAR DATA SET.

LCOUNT =LCOUNT )
TFILLOUNT .GEL21G0 TO &3
IF{K.NE.L)GO TO 59
WRITELD, 214}
218 FORMAT(15X98( 800, /, 15K 0%, 06K, "% /g 13Ks 4%  *,3]1K, "RESPONSE TO
SELEVATOR DEFLECTION'3Q0Xs* #9)
G0 T &0
59 MRITE(3,215)
215 FORMATILISE9B(%0 ),/ ISR 6% IR V61 4/515% 44
SFLAP DEFLECTION' 432X &¢)
60 WRITE(39216)CLINCCOINSCMINGK, ACT
2156 FORMATILSX s * %" 436K ® %/, 15K, 8% 396N s*4% o/15Ks*® v'CLIN =¢ ,Fl0.6
So 4Ky 'COIN =0 yFLO.644Xs*CHIN =" 3FLIe 098Ky °K -'-lZ-Q!-'lCC =Y Flé.8y
SEXet 7 15K TRV 496K, "0, /415K, 902 7))

*333%s "RESPONSE TO

CALCULATION OF DIMENSIONAL STABILITY OERIVATIVES

O ANDO DC ARE JUST CONSTANTS USED TO CALCULATE THE DIMENSIONAL
STABILITY DERIVATIVES.

D=RHOSUS S/NS
OCeRHOSUS SSCH/TYY

DIMENSTONAL STABILITY DERIVATIVES

XUsD»{~(COU+CO)
2U=Det~{CLUFCLY)

RU=OC*{ CHIAHCM)
TU=D={CTUSLT)

A (0/2CI*{CL-COADY
2u={072.0)% ~(CLASCD} )

M= (OL/72.0)®CRA

LOWu—RHO® SSCHICLDA/ [ 4o NS )
KW =RHOS SSCHEC DDA/ { & o O*NS)
MOW= RHOSSECHSC HECMDA/ ( 4. 0% 1YY )
XQu=-RHOMI®SECHOC DO/ (4. 0NS )
LQe—RHOSUSSECHOCLQ/ (4, ONS)
MY=DCOCHY(MQ/ 4.0

TRPM« 30¢CHSD*TRPH

561

565

sTe

aoaoon

noon

[aNaN ol 3]

o000 onon

onoa

XINm-DeCO TN/ 2,0
ZiN«—DeCL IN®U/ 2.0
HIN=DCSCNINGL/2 .0
1F(LCOUNT.GT 1160 TO 61
WRETE( 3, 207D Ky 2Uts MUy TU 9 XM o Z0 s MU XOW o ZOW o MOM ¢ X0 ZQs MR TRPM, X 1%
SZIN, NIN

21T FORMATI///2Kol23(00%0 o/ 42K et ¥t 21K T804/ 2K e 78" 364Xy ‘DI MENS TONAL
SSTABILITY DERIVATIVES® y44Xot8? /02X, 480 1121K018% o/52Ks 0504 2Xs
' XU = gFl0.5,8Xs" ZU = .Ho.s.u. "=
SF10, 5,4Ke* XN i, ™
3 W =t g FLO.SeaX,® 10.5,4Ke¢ DM =
S$F10.504Ks! XU ' 4FLO.54Ks"  ZQ = ¢FL0.5¢3Xs
$¢ MU OGFL0.SiANs P TRPM = JFL0. 5y 4Ky ® KIN =0 FLOLSebNe" ZIN =t 410
$.504X0" MIN =% oF10.59 23Ky 80, /02K o998V (121K " #7474 2Ks 1234 1%1))

COEFFICIENTS FOR TRANSFER FUNCTION

Aly A2y A3, A4, AS ARE CONSTANTS USED TQ SIMPLIFY THE CALCULATION
OF THE DENOMINATOR AMD NUMERATOR CUEFFICIENTS.

4l Al=TUSCOSXZ+ XU
A2uSINXL*TU~IU
A3=ZJSNSSTU/ I YV U
A4=1,0-20W
AS=ZQeV

DENONINATOR COEFFICIENTSs DS{S5)5¢84005{A)5003¢05(3)5052405(215+
0S(11, WHERE S REPRESENTS THE LAPLACIAN OPERATOR.

0S(5) =As

DS(4) ==Ab® {MQeAL } I H-HOMSAS+XOWEAZ

DSEI)sALE(NG*AL* It MDUSAS P =A3 S ( KOWSASEXQOAS ) ¢ AQELW—A2 ¢ { HQ® XD¥W=XN ~
SXQEMON) +MDMEGS I NGR=M¥AS

DS{2) =GSINGHM#{ KDWSAS+MN-MDNEAL ) +GCISCNE( ~AZBRDMSAI®AS 1A | - XUAS
SEINEXY ) ~A2%{ ~XOSMueXH ONQ I ¢ ALS( NS+ NE*AS)

0S11)sGLOSEN® (Mu*(~A2 ) ~ZW¥A3} +GSINGHS (XUSAT-MWTAL)

THE DO LOOP BELOM DETERMINES THE ORDER OF THE POLYNORIAL IN THE
DENUMINATOR, MDo

0Q 62 1m=1,8
IF(DABS(DS{111.6T.ACCIND=]~]
CONT INUE

IF{MD.NE.OIGO TO &3

[

N

IF MO = O, THERE IS NU CHARALTERISTIC EQUATIUN, THEREFORE TME
PROGRAM LS TERAMINATED..

CALL EXIT

NUMERATOR COEFFICIENTS FOR U VARIATION, NUSI4IS®e3eNuS(3)Sesle
NUS(2Z)SeMUSIL)

63 MNUS(4)=X]NSAL+LENSKOW
MUST 3 ) mAGS] XQUMIN-NAe KT NI *AS® | XDMEME N-MOWF LINI-ZWOXIN+L] Ne Xi-X0U
$*RQEXQ=MON)
NUS (2o ASS{ =M@ X INGMINSX W) ¢G5 ENGU*{ BOWSK [ N~ XOWS MIN} ~GCOSGR* { MOW
SPZINCASOMIND oK INSHQOL oL IN®{ NS K Q-MQ® Xid }=XQeZ ue N[N
NUS L1 )aGS ENGHSLX TN MU =X MR IN ) +GCUSENS ( INMI N-MU*LIN)

NUMERATOR COEFFICIENTS FOR ANGLE OF ATTACK VARIATION, MAS(4)Saw3s
NAS{3)Se82ZeNASIZISeNASI )

NAS{s)=ZINU
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onoDn
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BAG (3= LNOT1 AL oMQ) / WontiNoAS/ WX INa( ~A2) 7V

MNAS{ 2 )=NQeLINSAL 7Ue X1 NCASSAI/ Ue NI NOXQO{-A2) ZU-Z ] NORQeAY/ =M1 NEASeA
SLIUHINSGSINGNIUSKINENQS (A2 } /U

MS;I Fo-K1NSGCS INGHEAD / UeR] NEGCOSOM® A2/U LINSGCOSGNSA D Zisen] HEGS 1NGH
s*AL/Y

COEFFICIENTS FOR MUMERATOR FOR PITCH VARIAT10N; NTHS{3)See2e
NTHS (2D SoNTHSI)

NTHS{ 3) =1 NeAS+ 2T NSHON

NTHS (2 )mAL (M IR~ L [ NSNDW )+ AZ 8 ( MIN®XOM=X 1N MDu ) ¢A X ( 2| ¢ XDito X IN®
Shh ) —NINGLueT | oM

NYHS(1)=A)n( MINSZW=MUOL IND+AZE{MENS XN =XT NP L ¢A 30 LINENN-X INSZ M)

COEFFICIENTS FOR MUMMERATOR FOR W VAR JATION,
NES{I)5*%2 ¢ NWS(2)5 ¢ NuS(L)

MMS(4)See3 »

NNSCAI=NAS(4)ey
s LEIELTIYET L T)
NUSL2)mMAS(2 )%y
NUS(1)=NASTL ) ey
LFILCOUNT.GT.1)60 TO 64
MRITE(3,218)0505)50544) 40S(3F,0502)¢DS{ 1) ,NUS(4 ) oNUST 3D g MUS( 2) ¢NUS
SUL)oNASTAD o NASEI 3 JNAS(2) yNASEL) JNTHS (3D 4 NTHS (20 oNTHS{ L) o NHSL4) s NWS
$03) o NUS(2) oNMS (L)

218 FORMAT(///7/2X9123098% ) 3/ 42Ky P40, 121K "80,7,2X
SCOEFFICIENTS FOR THE DENOMINATDR AND NUMERATOR
SKeST{*-*),32K,

232N *PFOLYNOMI AL
2Kt %4y /2K,y 80,32
S/ aZXe 40 G 121K, WY,/ 20,00, 3K, *DS(S) ='yFl0.4
$e5Khe *DSLA) =% oF10.4,5X,°05(3) ot yFLO. % 5X?05(2) =0, Fl0aéy5X
$,*08( 1) Ot s F100453K0 P00,/ 2K, 0,1 21X, " £ eZXp " %% 27X, NUS(4)
$E0F1040p 5K SNUSI3) =0, F10, 495K, % MUS(2} sFLO. 45X, *NUS(]1) =0
*e/e2Ky 49 ,121X, £a2R "% L 27X, "NASIN)  w®,F10.4,5K,
#F10. 495K, *NASIZ) #%,F10.6,5K,"NAS(1) w®,F10,4, 3,
TLZIK 0804/, 2K, P80 51RO NTHS(D) =0 ,F10.495K, *NTHS (2) =*
$oFLO. 435K, *MTHS{L) = aF100493Xp 0% 0/, 2Ko 000 L L21 Ko "0, /2K "4, 2TXy
SONUSIA) @0 F10.4g5Ka NS =0 FLl0.4,5K,*NWSI2) = 10.4,5%,
SONMSCL)  m® o Fl0ady3Ke 80,/ 02Ky % 121K, %5/, 2X, 1230 =}

THE 4 ¢IF' STATEMENTS BELOW TELL WAICH SET OF NUMERAT OR
COEFFICIENTS TO USE DEPENDING ON THE VALUE UF NUMER.

64 1FINURER.EQ.1160 TO 65
1F(NUMER.EQ.2)G0 TO &7
TFINUNER.EQ.3)60 TO &9
TF(NUMER.EU.4)GO TO 7}

65 WAITE(3,219)

219 FORMAT('1lv, 1300000 1,/,1Xe" 08 ,120K,°
59452, *SOLUTION FOR U VARIATION®,52
some,
$ROOT

4 .
e/ sk Ne V¥ S5X, YOENOMINATOR

THE DO LOOP BELOM DETERMINES THE URDER OF TME POLYNOMIAL IN THE
NUMERATOR ¢ MN.

00 66 I=sl,4
IF(DABSINUSL 1)) GToACC AN =]
CONT INUE
IF(MN.NE.DIGD YO T2
MRITE(3,220) M8
220 FORMATIIX,*MN=*,]3)
CALL EXIT
47 WRITE(3,221)
221 FORMAT(*17v, 1304080 ) /el Xe® 0t 120X 0980 /o hXot0% 120,909,/ ,1X, %
$1945XK,*SOLUTION FOR ANGLE OF ATTACK VARIATION 45K 90,/ 1Ry

o

o

OOOMA0D DOADOO

SNy 0( =0} oASK @,/ 1K, 01 ,128K, 0
S0 'DENONINATOR RDOTS®,56X,9%%,/,1X,
DG 88 I=t,s
IF{DABS(NASE 1) DeGToACC ) MM =1

68 CONT I NUE
IF(MNLNE.DIGO TO T3
WRITE(3,220) M
CALL EXEY

69 WRITE(3,222)

222 FORMAT('1Y, 1300080 ), /p1Xe "7 128K o080,/ ARy 8% ) 120N "7,/ LK 0®
$° 055X, SOLUT ION FOR PITCH VARIATION® 45x% / e85
SKe2BL =) (ASX 80,/ LR, 0 ,128X, % -, 55X
$¢ *DENOMINATOR ROOTS® 56K,

DG 70 I=1,3
TF(DABSINTHS (1)) GT +ACC I MN=1-1
TO CONT IMUE
1FINNLNE.O)GD TO 73
WRITE(3,220100
CALL EXIT
71 WRITE(3,223)

223 FORMATL®1*, 1300087 )0 /o LXo 0t G L2AK 180 o/, LN P57 120X, 8% ,/,1X," ¢

955X, *SOLUTION FOR L] VAR [ATION® o 45K, P00, /0 1Ry0W0,55

LLITA IR RL T CRL AT RS PRI LIS V1 ¢ PR DS TALANET LI TRELET RS PLL (P13 3

50 "DENOMINATOR ROOTS®, 56X, #%,7,1X, 128X, 180)

DO 72 1=1,4

EF(DABS INNS{ 1) }.GToACC) MNm]~]
CONT [ NUE

IF{MNNELOIGO TO 73
MRITE(34220) N

CALL EXIT

L2BXe % o/ g 2Kyt 91, 55K
]

v
olXo 080, L28K, " 4/, 1K,
1)

T

[

GETROT IS A SUBROUTINE WHICH, USING OTHER SUBROUTIMES, CALCULATES
ROOTSs DAMPING RATIOS, AND NATURAL FREQUENCIES, AND THESE ARE
TRANSFERRED TO THE MAINLINE 6Y USE OF A 'CUMMON® STATEMENT.

73 CALL GETROT{DS,MO,RRO4RID)

FOR DAMPING RATIOS GREATER THAN UNE(A MON-OSCILLATORY MOOE) THE
FOLLOWING FOUR CARDS PREVENT TAKING TME SQUARE ROOT UF A NEGATIVE
NUMBER WHEN CALCULATING THE DAMPED MATURAL FREQUENCY. 1F THE
DAMPING RATIOS ARE GREATER THAN DME THEN THE DAMPED VATURAL
FREQUENCT ES REMAIN 0.0,

WDSP=0.0Q
wDP=0,0
IF(DABS{ZISP) .6Tule0} GO TO Té
WOSP=WNSPeDSQRT( 1.0=15F25P)

74 IF(DABSIZP).GT.1.0) GO TO 75
HOP=WNPSOSURT(1.0~2Po2P)

75 WRITE(3,224)(J4RROC(J) +RIDIS) g Ju), MO

224 FORMAT(LX,'%® 046X, *ROOT(*4f1e%) = *4F10.5,¢
MRITF(3,225)

225 FORMAT(1X,'%®,128X, e/ alKe U1 28X g %80 /o LN oF ¥ 34K, *NATURAL FRE
$Q'4 5Ky *DAMPING RATIU® ¢4Xs*TIME FOR L/2 OAMPING® 9%, * SETTLING TIME®
SolBX, 060,/ 1K " *, 31N, *UNDANPED  DAMPED® ,80X,%®*)

WRITEC 3, 226 JWNSP JMDSP o ISP, T125P, TOSSP

22 FORMAT(1Xs 984, 18X, * SHORT PERIOD® F9.5¢F10a5,2XsF 1005, 11XoF10.5414X

BoF10.5,22Xe% %94/ ,1X"9%,128X, %07}
MRITE(3,227)uNP,WOP 2P, T12P,TOSP

227 FORMAT(LKo*%* 118X, ' PHUGDLO® y4XsFLOe5aFL0e5¢ 2X¢F10.5411%,F10.5,14K,
$F10.5022K "1/ 1Ry 081 3 120Ke0 8%/, 1 K" %% 35K, 58(%=*),35K, /e lXy
$007,128K, 727)

*4 Y4FlOL5,4TX, 000

CALCULATION OF VALUES UF WF FOR FUTURE USE IN TME B00E ROUTINE,
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INCLUDED ARE SELECTED VALVES OF #Fl<0leelsle0s1040¢100.041000,0)

PLUS 5 VALUES ARGUND EACH NATURM. FREQUEMCY{2 ABOVE, 2 BELOM, AND
THE MATURAL FREQUENCY) TO INCREASE OATA IN THE S00E PLOT CRITICAL
ANEAS.

WFili=.,01

00 76 1J=2s8
Mely-1

WE(12)=wF (IN1)*30.0
CONT INUE

Kiof IS THE NUMBER OF NATURAL FREQUENCIES TO BE USED Im THE B0DE
ROUT I NE &

KW=t

11 AND IK ARE COUNTERS USED YO DETERMINE THE MAXIAUM VALUE OF KuE
DEPENDING OM THE NUMBER OF NATURAL FREQUENCIES IN baTH THE
NUMERATOR AMD THE DEMOMINATOR OF A PARTICULAR TRANSFER FUNCTION.

Ii=0

1%=0

IF{1.EQ.Q}G0 TO 78
IFITI,EQ.2) Gu Ta 77
WELZy=0. 9% uNP

WF{13) =0, TSOWNP
WF{16)=uhP

WELL5hwl 1ouNP

WF Lo} ). 25%uNP
({529

KWF=18
WF{T )=, G*HNSP
WF(8) =, THOUNSP
wWFL9) aWNSP

WF(10) =1, 1 5WNSP
WF{ll)=1,258uNSP
11=1
LF{KWF.EQ.16160 TO 78
K =1 1

GETROT 1S USED TO FIND RNATS OF A PARTICULAR NUMERATOR TEPENDI NG
ON THE VALUE OF NUMER.

1F{NUMER.EQ.1)60 TO 79
IFENUMER.EQ.2)GA TO 80
TF{NUNER,EQ.4)GO TO 81

CALL GETROTENTHS s MN, RANyRINI

G0 TO 82

CALL GETROTINUS:MNsARNRINI

GO YO 82

CALL GETROTINAS s MNsRRNRIN)

GO Ta 82

CALL GETROTINWS ¢ MNeRRN,AINY
WRITEL3,228)

FORMAT (1 Xy ®%9 56X, YNUNERATOR ROOTS® o STK 990,/ 41X " % 128X, 0%}
MRITE(34224) (JoRANLJI) ¢ RINCI Do du] o WND
WRITE(3,22%)

IF THME DAWPING RATIU MAS AN ABSOLUTE VALUE GREATER THAN ONE(A NON-
OSCILLATORY MODE)y THEN A OAMPED NATURAL FREJUENCY 15 NOT
CALCULATED FUR THE NUMERATOR. THEREFGRE, WOSP AND WOP ARE LEFT AS
1ERU.

WosSP=0.0

83z

IaXaNakal ]

[a¥aXalsXaReXakaRaXakal

(o X o]

nooe

W0P=0.0

IF(DABS(ZSP) 6T.1.0) GO Ta &3
WOSP=WNSPEDSQRT( L. O~1SPISP)
IF{DABS{ZP)oGTul 0l GU TD 84
WOP=NNPAD SQRT(1.0-2Pe 2f )

8

»

THE THO WRITE STATEMENTS SELOW PRINT THE PERTINENT INFORMATION FOR
OSCILLATORY MODES IN THE NUMERATOR. IF THE NATURAL FREGUENCIES
ARE PRINTED AS IERD THME MODE 1S NOM=OSCILLATORY.

8% WREITE(39229)uNSP JHDSP ¢ LSP+ T125P, TOSSP
WRITE (3,229 MNP 4WOP , LP, T12P, YOSP

229 FORMAT{1X,'s* 22B8KeFFubyFll ety IRy FlOab el LX¢FLOS s 14N F LS 22Ky "y
$/e1Kyt et L28K, 40
WRITE (3,230}

230 FORMAT(IN P89, 350,582 ) 35K "0/ s hXs?8' s 128K 190,/ 41K 08" *33Ke ¢
$BODE PLOT INFORMATION',58X, X 2128X s %%/l y2L Xy *FRE
SQUENCY® ;26X "AMPLITUDE RATIO® 425K+ "PHASE ANGLE® »21X¢ e/elXptut, )
tixu'kADISEC'.!l.'CVCLESISEC'ul‘Oln'PURE‘-IOI.'OECIBELS‘.l’lv'llDlAN
$5% 46Ky *DEGREES? y15XK,* 2"}

THE NEXT FEW CARDS ARE A ROUTINE TD FIND MORE VALUES OF WF FOR THE
BODE PLOT ROUTINE OEPENDING ON WHETHER OR NOT THE NUMERATOR HAS
ANY OSCILLATORY MODES, THE FREUGUENC LES AND THE VALUES OF KWF ARE
CHOSEN IN THE SAME MANNER AS THOSE OF THE OENOMINATUR PREVIOUSLY
HENTIONED.

MD1 AND MNL ARE USED TO PREVENT HAVING ZERU SUBSCRIPTS wHEN
CALCULATING THE WUNERATOR AND DEMOMINATOR GALNS FOR THE BODE PLOT
SUBROUTINE.

HDL=ND+1
L IEL 13N
IFL1.EG.01GD Ta &7

I1 AND IK ARE COUNTERS USED TO DETERMINE THE MAXIMUN VALUE OF KNF.

IFLEToEQe 00 AND. 1K.EQ.0)GC TO 86
IFU11eEQa1.AND.IN.EQ.0IGD TO 85
WF{1T)a, 9%uNSP

WF(18) =, TS™NSP

WF{19)awNSP

WF(20¥=1.1*WNSP
WFi21)m] 4 25%MNSP

KwF=21

=
}
4
¢

WF{15) =1, LowNSP
WF(16) =), 25%wNSP
KwF=16
GO YO 87

86 WELT)=, 9%uNSP
WE(B )=, TSOHNSP
WEL9) sWNSP
ME(10)=1.190NSP
MF(11) w1, 25%WNSP
KuF=11

87 IFINUMER.NE.1)G0 TO B8

=1

THE GAIN (KGAIN) FOR THE ROOT LOCUS PLOTS 1S CALCULATED FROM THE
COEEFICIENTS OF THE HIGHEST ORDER TERM IN THE DENOMINATOR AND
NUMERATOR ; TFaKGAIN{S=A)[S=B)/(S-CI{S5~0), WHERE A AND & ARE RIOTS
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232

OF THE NUMERATOR AND C ANO O ARE ROOTS OF THE OENOMINATOR.

KGATN=NUS (MNL1/0S(MD1)
G0 TO 91
TF{MUMER .NE.21G0 TO a9
KGATN=NAS {MM1)/0S{MND1 )
<0 Y0 91
TFUNUMER . NEL2)GU TU 90
KGAIN=NTHSIMN] 1/0S(m01)
G0 T0O 91
KGATMsNWS {MN1)/DSUMD] )
KKuF=KuF

THE NEXT 12 CARDS RANK THE WF'S IN ASCENDING OROER.

MAX=#F (1)

LK=]l

D0 93 JOwZ,KKwF
TFINF(JO)}oGE . WAX HLK=JD
IFUWF (JO) 4 GE WAX IHAXaWF ( JD)
CONTINUE

MSAV=WF{ KKWF)
WEKKNF ) aWAX
ME(LK)}=aSAV
KKWF =K KHF-1
TFIRRWF.EQaLIGO TO 94
GO T2 92

BODE IS THE SUBROUTINE MHICH CALCULATES AMPLITUDE RATIO AND PHASE
ANGLE FOR EACH WF, THE INFORMATION IS TRANSFERAEQ TO THE MAINL INE
8Y THE USE OF A *COMMON® STATEMENT.

CALL BODE | MDy MN¢ KNF }

WRITEC3 02311 AWFUTIoMCYCLECT) S ANPRILD o AMPROB (115 PHASE( 11, PHOEGL 1)l
Su] KWF )

FORMAT (1X 4% ,13X,F10.506X,F10.5, 12X4F10,2¢6X¢F10.5,12K3F1005,6X,F
$10e5, 13X, 090}

WRITE(3,232)

FORMAT (1Ko *4°,120K, %80, /,1X,130(*9%))

G0 To 58

ENO

SUBROUTINE GETRATICUFFY4MqROOTR,ROOT 1)

GETRIT IS A SUBROUTINE WHICHs USING OYHER SUBROUTIMES, CALCULATES
ROOTS, DAMPING RATIOS, AND NATURAL FREQUENCIES, AND THESE ARE
TRANSFERRED TQ THE MAINLINE Y USE OF A "CUMMON' STATEMENT.

IMPLICIT REAL®B(A-H,0-1)

REAL*S lS'lYV.w.N.!D&.m.HIN-WS.MS-NTHS;KGAIN.KC.IROBT'KKK-KD-
$KNo NWS

COMPLEX#16 P,TST

COMMON WNSP o ZSPoTLESP o TOSSP WP o ZP s TLZP+TOSPoMFL21) ,RRD( 101, RRN(
$103,RID(10J1RINE10) yAMPRIZ1I s PHASEL 2] D oACC,MCYCLE(Z1) , ANPRDB(21) ,P
$SHDEGE 21 )y KGAIN

COMMON 1

DIMENSTON NUS(S) JMASIS) «NTHSE 50 40516 ) JROOTR 101 ,ROOT 1410 }4GI5) ,KCE
$415QUFLINeQUF2(3) RR1(2Z) 4RR2(2) 4RI (2} 4RIZ(2)CCL&D4RA(S) ,COFFI (6
tiuﬂl(ll;lﬁllhll(3)'CDFl3),RE!ZI.KII!ZI'WTIl.hCOFF(ZhKN(IZlI,NI
$5(5}),Pls)

THE 3 *IFY STATEMENTS BELOW DECIDE WMICH ROQT-EXTRACTION

a9y
a9s
899

901
902
903
204
205
206
907
908
909
210
11
912
913
e
915
6
97
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937

LR Y- VR WY S

acoo

fapooo

nOoono

aonNfa onopoObNOCONRANROOO

10

N -

w

+

w

9

L]

SUBRUUTINE TO CALL DEPENDING ON THE VALUE OF M(THE ORDER OF THE
POLYNOMIAL).

IF(M.EQ.4)GQ TO 3
1F(M.EQ.3160 TO 2
TF{M.EQ.2)60 TO 1

THE SUBROUTINES SINGLE., QUAD, CUBE, AND FOURTH SOLVE (THE SOLUTION
1S ACHIEVED IN CLOSED FORM AND THUS REQUIRES MO ITERATIVE
PROCEDURE) FOR ROOTS OF FIRST, SECOND, THIRD, AND FUURTH ORDER
POLYNOMIALS, RESPECTIVELY.

CALL SINGLE(COFFI,RO0TR,ROOT])
GO TO &

CALL QUADICOFFT,RO0TR,RO0TI)
GO TO &

CALL CUBE(COFFI,ROATR,ROOTI )
GO TO &

CALL FOURTMICOFF | JADOTR ¢ ROOTI #

THE FOLLOWING CARDS TEST TME ROOTS OF THE POLYNOMIAL TO CMECK THE
ACCURACY OF THE ROUT SOLVER SUBRDUTIMES. (F THE VALUE OF TST IS
TOO LARGE A WARNING MESSAGE [S PRINTED,

00 & Isl,m
PLI)=DCMPLXIRODOTRIT)4ROOTI(T1)}

LFRO=0.0

TST=aNCMPLXICOFFI (13,2ER0)

MJuMNs ]

00 5 J=2,mJ

TST=TST+COFFI{JI*PLI) ®e(J-1)

CONT INVE

IF(CDABS{ YST).LE.ACCIGO TO 6

WRITE(3,1000P(),TST

FORMAT(LX s "ROOT = 9,2G15.8,7 WHEN SUBSTITUTED INT) ITS PULYNOMI
SAL FAILED TO COME WITHIN ACC OF 0.0.%,/41%,*THIS VALJE DIFFERED FR
$0M ZERD 8Y 1,2615.8,* THIS IMPLIES EITHER A ROUNDOFF ERROR WMEN
STESTING THE ROOTS®»/41Xs*(ACL TOO SMALL) OR THE VALUE 0.0l USED TO
4 COMPARE WITH TEST IN SUBRDUTINE FOURTH 1S TOO LARGE. ')

CONTINUE

I 15 A COUNTER WHICH DETERMINES THE NUMBER OF RQOTS WHICH HAVE
BOTH A REAL AND AN IMAGINARY PART.

THE NEXT 25 CARDS 15 A PROCEDURE MMICM POSITIONS AOOTS WITH BOTH
REAL AND IMAGINARY PARTS IN THE FIRST L PUSITIONS AND THE ROUTS
WITH ZERD IMAGINARY PARTS IN THE NEXT KK POSITIONS. FOR EXANPLE
IF THERE ARE & ROUTS, THO WITH ONLY REAL PARTS ANJ Va0 COMPLEN,
THE COMPLEX ROOTS MILL BE IN POSITIONS 1| AND 2 AND THE REAL ROOTS
WILL 8E IN POSITIONS 3 AND 4. L, Ky AND KK ARE COUNTERS USED TO
FACILITATE THIS PROCZODURE.

1 IS A COUNTER WHICH DETERMINES THE NUMBER OF ROOTS dHICH HAVE
BOTHM A REAL AND AN IMAGINARY PART.

I=M

N IS A COUNTER WHICH PREVENTS THE ORDER OF THE POLYNIMIAL FROM
BEING DESTROYED,

N=M
L=]
KmMe]
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K&=0

00 8 Juleh
IF(ONBSCROOTIEJ) J.GTLACCIGO T0 7
1ul-1
ROOTI(K}=ROOTILJ)
ROOTR(K ¥=ROOTRAJ}
K=K+l

KKsKK+1

G0 YO 8§
RODTI(LI=ROOTI (4}
ROOTR{L }=ROOTRES)
L=tel

CONT INUE
1F{KK.EQ.0)60 TO 10
Ki=mK-KK
ROCTIANI=ROOTL (K1)
ROOTR{ W) =ROOTRIKI}
N=h-l

KRKniK -1
IF(KR-EQ.Q160 TO 10
Ga YO §

AT THIS POIMT THERE ARE I ROOYTS THAT HAVE BOTH A REAL AND AN
IMAGLNARY PART AND (M=11 ROOTS WITH JUST A REAL PARTY,

THLS PART OF THE PROGRAM DETERMINES THE LARGEST REAL PART OF THE
ROOTS AND RANKS THEM FRGM THE BOTTOM IN THE | POSITIONS AVAELAM.E.

RMAX®ROOTR(1}

K=1

IF{1.EQ.0) GU T 13

00 11 J=le}

1F(DABSIROOTR(JS ) oGT L RMAXIR=S
IF(DABSIROCTR{A) 1oGT+RMAX]I RMAK=ROOTR (4]
CONT INUE

RSAVER=ROGTR(1)

RSAVE L=ROQTI (1)
ROOTR{L}=ROOTR(X)

ROOT ¢ L Y=ROOTI (K}
ROOTRUK)I=RSAVER

ROUT] (K)=RSAVEL

NsI-1

00 12 Jo1N
1F{DABS(RMAX-ROOTR{J)} 1o LEACCILY
CONT ENUE

RSAVER=ROOTR {N)

RSAVE I=ROUTI IND
ROOTR{N)=RCOTRIL)
ROUTL{N)=ROOTI(L)
ROOTRULJ#RSAVER

RUOTL (L) =RSAVE]

THE QUTPUT FOR BOTH NUMERATOR AND DENOMINATOR 15 PAINTED IN A FORM
WHICH REQUIRES TwQ 0SCILLATORY MODES, IF ONE OR BOTH OF TME MODES
ARE NON=OSCILLATORY TMEN THE FULLINING PROCEDURE 13 USEDI
1} THE DAMPING RATIOC IS C4OSEN TO WE THE SMALLER MAGNITUDE OF
THE REAL ROOTS, SINCE THIS ROOT WILL DOMINATE IN THE TINE
DOMAIN (A NEGATIVE DAMPING RATIO WOULD INDICATE &N
UNSTABLE #ODE).
21 THE TIME TO DAMP TO SOS AND 5K OF THE ANPLITUDE ME
CALCULATED BASED ON THE ABOVE DAMPING RATIU. THUS, FOR MN
UNSTABLE SYSTEM THESE TIMES wILL 8E MEGATIVE.

THE REMAINING PORTIOM OF GETROT CALCULATES TNE NATURAL FREQUENCLES

PaXalatalatstakakalalalaXalaRok

13

1%

15

16

17

1

19

20

(WNP & WHSP), DAMPING RATIQS(ZP & ISP), TINE TO DAWP TO 1/2
AMPLITUDEITIZP & TI25R)4 AND SETTLING TINE(TOSP & TOSSPI. THE
SETTLING TINE 1S TWE TINE YO DANP TQ S8 OF THE ORIGINAL AMPLITUOE.
THE SUFFIXER ® AND $F REFER TO QSCILLATORY MOOES FOR THE WURERATOR
OR THE DEMOMINATOR OEPENOING O THE EQUATION BEING SOLVED .

THE SHORT PERION AND FYUGOTO NATURAL FREQUENCIES ARE DETERMINED BY
A RANKING OF THE MAIN)L "MOE OF THE REAL AND IMAGIMARY PARTS OF THE
ROOTS¢s THE LARGER WAGNITUOE REPRESENTS THE SHORT PERIOD MODE. 1IF
THERE 1% ONLY ONE OSCILLATORY MODE THIS MODE IS REFEXNED TD AS THE
SHORT PERICD MOOE AND THE PHUGOID WODE NATURAL FREQUENCY 13
PRINTED AS 2ERO. WMEN GETROT IS USED FOR A NUMERATOA POLYNONIAL
THE SWORT PERIOD INFORMATLION IS PRINVED AS A NUMERATIR QSCILLATORY
MODE(SINCE A CUBIC IS THE LARGEST NUMERATOR POLYNOMIAL POSSIBLE,
THERE wILL BE ONLY ONE OSCILLATORY MODE AT NOST).

1F{M.EQ.1160 TO 17
AND.1.EQ.0160 TO 13
TF{N.EQeZ «ANDL1+EQs2)60 TO 3
TFMLEQe3 s ANDL 1. EQ.01G0 TO 22
IF(M.£Qu3 cAND [ EQe2)G0 TO 26
IF(M.EQubeMN0aL4EQe01GD TO 27
TF(M.EQu4AND. T4 8Q. 2160 TO 32
WNL=DSQRT (ROQTA( 1) *#ROOTR{3JoROGTL (31 #AOUTI{ M) )
MNNZ=DSQRT (ROOTR{1) SROOTREL JoRQOTT (1) *ROQTT{ 30D
IF(MNL.GT WN21GT TO 16
WHSPwWNZ

NX=20

WP N

GO YO 1%

WHSP WNL

NX=10

WP =N

IFINX.NE.20)GD YO 16
ISPe~ROUTR{L )7 WNSP
TASSP={2.9957)/( LSPHuNSP)
TIZSP=(+69314T)/(ISP*UNSP]
1P=—ROOTR (3} /uNP
T12P=(.69314TI/IIPsUNP)
TOS5P=(2.,995T)7{ZPounr |

GO YO 35

LSP=—ROGOTR{I}/WNSP
TOSSP={2. 99571/ L ISPouNSP]
T125P el .69314T) Z{LSPEWNSP)
ZPm=ROGTR (1) /7uNP
TOSP={2.9957 )/ (ZP*uNP)
TIZP={.69314T)/ L LP*uNP }

60 TO 35

WNSP=0,0

WNP=0.0

ISP=~ROOTR(1)

1P=0.0

TL25P=, 49314 T/1I5P
TOSSP=2,995T/715%¢
T05P=0.0
Ti2P=0.0

GO TOo 35
1F(DABSIRDATR(1) )e6T . UARS(ROQTRIZINICE TO 1Y
15P=~ROOTRLL)
1P=—ROOTR 2}

GO TO 20
15P=-ROOTR{2]
IP=-ROOTR 1N
WNSP=0.0
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21

22

23

26
2

w

28

21

2

P00
T12Pw,69314T/72P
TO5P=2.9957/2p

T125Pu, 69314 7/15P
TOSSP=2.9957/2SP

G0 Ta 35

WNP=0,0

IP=0.0

T12P=0.0

TO5P=0.0

WNSPeDSQRT (ROOTR(1) *ROOTR (1 3¢ROOTI (1 1*ROOTI(L))
Z5P=—ROUTR{L ) /uNSP

TL2SPu o 693IAT/(LSPEUNSP)
TO58P=2,995T/(ZSPeNNSP}

GO TO 3%

RAK=ROQGTRIL)

K=}

D0 23 J=1,3

1F{DABSE{ROOTREJI ) uGT RAXIKSS
TFADABSLROOTRE 4) 1 46T RAXIRAX=ROGTR{ 4 )
CONT I NUE

RSAVeROOTREI )

RODTR(3) =RAX

ROOTR(K) =ASAV
LF{0A3S(ROOTRIL} 1.GT.DABSIROOTAIZ}DIGO TO 24
L3P=—ROOTR(] )

LP==ROOTR{2)

60 7O 25

15P=~ROUTR{2)

IP=—ROOQTR(1)

wWNSP=0,0

WNP=), O

T12P= . 69314T/1P
TOSP=2,9957/1P
T125P=.693147/25P
TOS55P=2,995F/25P

GO TO 38

WNP=0 o0

IP=-ROQTR { 3)

T12P=,69314772P
TaSP=2,9957/1P

WNSP=0SQRT IRCOTR (1) SRUOGTR(1)+ROGT 111 J®ROGTI(11)
15P=-RODTR{1 ) /uNSP
T125P=,693147/(2SPeuNSP}
TO5SPe2,.9957/(ZSPAUNSP)

G0 YO 35

RAX=ROOTR{1)

K=l

00 28 J=1,4

1F(OABS(ROOTALIN J oGV RAKIK=S
IF(DABS{ROOYRIJI ) oGTAAXIRAX=ROOTREJ }
CONT | NUE

RSAVaROOTRIS )

RODTRUA)=RAX

ROOTRIK)=RSAY

RAX=ROOQTR(1)

Kal

D 29 J=1,3

IFLOABSIROOTRIII D o6 T RAXIKnY
1£(DABS (ROOTR{J) 16T RAXIRARSROOTR(J }
CONT I NUE

RSAV=ROOTR{3)}

ROGTRE 3 ) =RAX

RODTR{ K)mRSAY

aorONrn

30

3

3

~

3
346

35

-

1FIDABS (ROOTR{111.GT.0AUSIROOTR(2)1IGU TO 30
ZSP=-ROATR(L)

ZP==ROOTR(2)

GG Ta 31

1SP=-ROCTA(2Z)

1P=—=ROOTR{Y)

WNSP=0.0

WNP=(, O

Ti2P».693147/LF

TO5P=2,9957/1P

T125P=,69314T/75P

TASSP=2,9957/15P

GO Tu 33

MNSP=OSQRT(ROOTR(LI#ROGTR (1 3+ROGT 11 1#R0QTIEL 1)
I5P=~R0D0TREY ) 7WNSP

WNP=0,0

T125P=. 693147/ (LSPeuNSP)

TO55P=2,.9957/{ 1SP*UNSP)

TF(DABS(ROOTREI) }.6T. OABSIROOTR(41)1G0 TO 33
IP»—ROOTR(3)

GO TN 34

1P==ROGTR (4)

T12SP= (2. 9957}/ (LSP*MNSP1
TOSSP=.693147/(2SPumNSP]

RETURN

ENO

SUBROUT INE FOURTM(C »ROOTR¢ROOTI )

THIS SUBRODUTINE FACTORS A FOURTH ORDER POLYNONIAL BY A CLOSED FORM
PRUCEQURE WHICH FURMS 2 QUADRATIC FACTORS AND THEN CALLS A
QUADRATIC FACTORING SUBROUTINE, QUAD, TO OBTAIN TME FOUR ROOTS,
THE PROCEOURE WAS TAKEN FROM *INTRODUCTION Tu THE THEORY OF
EQUATIONS® BY N.B. CONKWRIGHT.

INPLICIT REALBIA-H,0-Z)

REAL®B NS, 1YY, MUy AW MDM sMQoMING NUS » NASoNTHS o KGA | NgKC p KROOT oK KK o NWS

DIMENSION CU5),KCI4), QUFLLI )sQUFZ13) sRR112) 4ARZ(2),RIZ(2)4RIZ(2),R
$0GaTR(10) 4ROOTI410)

P=C{4)/C(5)

=C{3)7C(5)

R=C(2)7CLS)

S=C{L)/CL5)

KL(4)u),.0

KC(3)n-,50Q

KCE2)u, 258 (PPR~4.0%5)

KCULVm,125%{ 4,00 QoS —PopeS~RoR) -

HKCm(3,05KC(4)*KCI2)-KCI3DEKC (30079, 09KC(4) SKCL4 )

GRCmE 2o OKC {3V ORC LI IPKCI3D-9, 00K (4 ) KT E AIPKC(2)#2T DKL (41ORI(4)
SKCILI}/ (2T, OMKCINI KL (4)*KCE4) )

RAD=GECHGRC 4 o O #HKC #HKC SMKC

IF{RAD.LT40.0)60 TO 3

UKC=( ( ~GRCHOSQRT {GRCHGRE +4 L ORHKCHHKCHHKC } 172,00

RTUKC=DABS{UKC 1%+,333333333333333

UKC=DSI LN {RTUKC , UKC §

VKCo~HKC/UKC

KROOT SUKC+VKC~KC (3) /L 3. 0%KC (4]

B=DSQRT (LROQT*XROOT -5 }

A=OSJRT( 24 08KROOT+PSP S, 25-0)

TEST=2,09A%8 +R-KROOT® P

IFITEST.LEL.O)Ga TO 2

Am—p
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TEST#2 .00 A8 +R—KROOTEP
IF{YEST.LE..01060 T 2
Am—h

8=-8
TEST=2,09A%B+R~KROOT*P
IFITEST.LE..01)60 TO 2
A—A

QUF1(3)e1.0

QUFZ{3)=1.0
QUFL(2)u.5¢P-A
QUFZLZ1=o 5% ¢A
QUFL(1)eKROUT-B

QUF 21 ) =XROQT+8

CALL QUADIQUF1RR1,RIL)
ROOTRELI=RALALY
KOUTR(2)=RRL{2])
ROOTICL)=RIL{L)
ROOTILZ)=RILIZ}

CALL QUADIQUF2,RR2RI21
ROOTR{ I =RR2(1}
ROOTR{AD=ARZ(2]
ROOTL(3)eRIZ{LD
ROOTI{4)=RE2(2)

RETURN

THETAROARCOS (—GKC/ § 24 0%0SART I ~HIC SHKCSHRC 1Y )
TH3=THETA/3.0

KROOT = 2,0%0COS{TH3I DSQRT (~HKC) = KC(IN/03.00KCl &)
GO TO 1

END

SUBROUTINE CUBEILC,XRsXE)
IMPLICIT REAL®E(AH,0~L)
DIMENSION CCE4)¢RRI3) yRIC3) o XRI31eRI(3}

THIS SUBROUTINE FACTURS A THIRO ORDER POLYNOMIAL #Y & CLOSED FORNW
PROCEDURE GIVEN IN YINTROOUCTION TD THE THEORY OF EQUATIONS® ay
CONKWRIGHT ANO MODIFIED BY THE PROCEDURE GIVEN IN *STANDARD MATH
TABLES® BY CHEMICAL RUBBER COMPANY.

He(3.,00CC 40 5CCI2)-COE3NSCC(INI/(9,00CL (4)uClis))
Ol.~.Q¢hn.u..ﬁn—u-nnn-u_lanaiﬂn.ovcﬂh—w_o.uﬂan_onq-o|nn.0-.ﬂn_o_cﬂn
SILIIZ127,08CC LI RCC(41%CCIAID
RADmGOG44 , OUHEHEN

IF(RADLT.0.0)60 TO 3

URUOT 3= ( ~G+DSQRT(GRGH4, OMHSHON} 1 /240
IF(URDDT34LT 40,0160 TO 1
URDOT=UROOT 3o, 333333333333333

60 TJ 2
URUOT=(—URDOT3)#%,333333333333333
URDO T ==URQQT

VROO Fa=H/URTOT

RR{1)=UROOT+VROOT

RR(2) == LUROOTHYROOT I/ 2.0
RR(3)w=(URCOT+VROOT /240

®I(1)=0.0

RI2 ) =(UROOT -VROOT ) #( . 866025403784}
R1€3)w-(URCOT=YROOT }¥{, 8660254037041
XRELI=RR(1)=CCE3}/(3.0%CCLS)}
XR{2)}SRREZ)=CC(II/(3.0%CCHST)
XR(3}=RREII=-CC{IN/(2.0%CCIN))
Xit1)=RItL)

X 2)=RI(2)

noan

ono

npoconOonn

-

-

~

X1(3)=A1(3)

GO Ta 4

THE TA=DARCOS {—6/ 1 2. OSDSQRT {—HHON) 1 )
THI=THETA/ 3.0

XL(1=0.0

X1{2)=0.0

X1(3)=0.0

XR{1)®2,0#0C US{ W3 I SDSQRT (~H}
XR{21%2,0%0COS{ THI®Z . 094395102392 ) #OSQRT (- )
XR(3)mEy QDCOSL THI* 4 LUGTHOZO04TIS | SUSQRT (-H)
SUBSGE(3) /(D 00CCLaN)

XRULPuERCLE=SUS

XR(Z)oXR(2)~SUN

XR{3)=XR{D1=Sun

RETURN

END

SUBROUTINE QUAD(COF (RERIN)

THES SUBRDUTINE FACTURS A SECOND ORDER POLYNOMIAL BY USING THE
QUADRATIC FORMULA.

IMPLICIT REAL®B{A-H40-Z}

OIMENSTION COFL3),RE(2)RIM{2)

OLS=COF (2}CIF (2 1—% L0*COF €31 ®COFL L)
IF(DISeLT(0.0) GO TD }

RE(1)=(=COFL 2F+OSQRT{DIS) 1/(2.0%COFL3))
REL2) = {~COF{ 2}-DSARTIDISII/(2.08CAFI3N)
RIM{1)=0.0

RIM(2)=0.0

60 7O 2

RE(L ) ==COF (2174 2.00COF 31D

RE(2)=RE(1)
RINLL)=(-0SQRT(=018)) /1 2,08COM (3D
RIME2 )= (OSQRTI~AIS) 1/7{ 2,00COFLHID
RETURN

ENO

SUBROUTINE S INGLU(CQPERQOT,ROCTTI
THIS SURBRQUTINE FACTORS A FIRST ORDER POLYNOMIAL.

IMPLICTT REALOBCA=HVO=L}

DIMENSION RCQT (L) (COFFE2E4RO0OTIILY
ROOT(Lhe~LOFF(LI/COFF (2}

ROOT1 (L I»04Q

RETURN

ENG

SUBROUT ING BODE{Ledds KNP

THES 15 A SUBROUTINE WHICH CALCULATES THE INFORMATION NEEDEC TO
CONSTRUCT A UODE #LOT ONCE THE NUMERATOR AND DENOMINATOR
POLYNOMIALS HAVE WEEN FACTURED. THE INFORMATION IS TRANSFERRED TQ
THE MAINLINE &Y USING A 'CUMMON® STATEMENT, THE FREJUFNCIES ARE
GIVEN MOTH IN RADIANS PER SECOND AND CYCLES PER SECOMO. THE
AMPLITUDE RATIO 1S GIVEN BOTH AS A PURE NUMBER ANO [N DECIBELS.
THE PHASE AMGLE 1S GIVEN BOTH IN OEGREES ANU RADIANS.

R R R A N

-

CENCWNEWN -
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IMPLICIT REAL®B(A—H,0-Z)

REALSE NS 1YY oMU MuoMON 4 MQ o MINs NS s NAS, NTHS ¢ KGA TNy KC s KROOT 4 KKK oK D4
$KNy NS s KDSAVE , KNSAVE

CaMMON WNSPo LSPsTL2SP s TOSSPylNP o LP o T1 2P, TOSPyWF (21) ¢RRD{ 10),RRN(
$10) RIDELOD JRINCLIO) ¢AMPRIZL) ¢ PHASE{21) s ACC, MIYLLE(21) JAMPROA (21 ) ,P
SHDEG(21)4KGAIN

COMMON 1

OIMENSION KXK(21)

00 9 m=]1,Kuf

AMPO=1 .0

KD=1,0

PHASED=0.0

D0 & J=l,L

1FtRAD{J) +EQ.0.0)G0 TO 1

G0 TO 3

AMPO=AMPD*DABS {WF (M} =R1D(J))

IF(WFEMI-RID(J).LT.0.0)6D TO 2

PHASEDuPMASED-2.1415926536/2.0

GO TO &

PHASEDwPHASED¢3.1415926536/2.0

G0 YO 4

AMPD=OSQRT (€ (~WF {M)*RED{J)}/RRO(J) )9 *241,0) $AMPD

PHASED== (DATANC (R ID(J 1+MF (M) )/ {-RAD(J) ) ) }+PHASED

KDSAVE=KO

KO=—-RRD(JIWKD

IF{KDSAVE®KD W T4 0e0}PHASEO=PHAS ED~34 1 415926538

CONT INUE

PHASEN=0.0

KN=KGATIN

AMNPN=1.0

D0 8 lal,44

IFIRRNLL).EQ.0.0)G0 TO &

G To 7

AMPN=AMPNADABS (WF(M)~RIN(11)

IFIWF{M}-RIN{T}uLT.0.00G0 TO &

PHASEN=PHASEN®3.1415926536/2.0

GO Tu 8

PHASEN=PHASEN-3.1415926536/2.0

GO To 8

AMPNDSART ({ (=WF{MISRINCTDI/RRN(E 1) 932¢1,0) sAMPN

PHASEN=DATAN (=R INCT}+WF (M) J/(~RRNIT )} IoPHASEN

KNSAVESKN

KN=<RRN(1 )} ®KN

IFIKNSAVERKN.LT 2040} PHASENaPHASEN+3.1415926536

CONT I NUE

KKK (M) =KN/KD

AMPR (M} =DABS (KKK { M} }» AMPN/ AMPD

AMPRDB (M) #20,0%0LOGLO(AMPRIN) )

PHASE (M) =PHASED+PHASEN

PHDEG{M) =PHASE(M)I®ST, 295779513

WCYCLE(M) =MF (M) /{2.003,14159286536}

CONT INUE

RETURN

END
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SAMPLE OUTPUT

-
.
-
*
»
»
»
»
#
a
-

FEEARUNS AN S AR SO AN &

L L]
= *
. PERTINENT ATRPLANE CHARACTERISTICS -
- - -
L] -
- DENSITY (SLUGS/FTeed) .= 0£.00205 VELOCITY (FT/SEC) = 219,00000 -
. MASS (SLUGS) = 8230000 1YY (SLUG-FT*42) =1146.00000 -
- THRUST (POUNIS) = 0.0 24 (FT) = 0.0 .
- GHCOSIGAMMA) (FT/SEC/SEC) = 32.25000 GOSIN(GAMYA] (FT/SEC/SECI = 0.0 .
* COS(XZ) = 0,99810 SINOXT) = 0.06105 -
" -
. WING AREA {FTe82) = 174,00000 HORZ, TAIL ARZA (FTes2} = 3A,71000 -
. WING SPAN (FT) = as.s000 HORZ. TATL SPAN (FT) = 11.54000 "
* WING C4NRD (FT) = 4.85627 HORZ, TAIL CHIRD (FT) . 225462 .
. WING ASPECT RATIO - 7.37310 HORZ. TAIL ASPECT RATIO = 3.44024 .
. WING TAPER RATIO = 0.69500 HORZ. TAIL TAPER RATIO =  0.45000 .
. WING ALPHA (DEGREES) = 1.50000 TAIL ALPHA {DEGREES) - —4,60634 .
. IWING (DEGREES) = 1.50000 ITAIL (DEGREES) = ~3.00000 .
. DOWNWASH ANGLE (DEGREES) =  1.5063¢ DOWNWASH/ ALPHA = 0.42101 -
. ELEVATOR ANGLE (DEGREES) =  T.T0657 ELEVATOR AREA (FTew2} = 16451900 .
. TAIL EFFICIENCY = 0.85000 ELEVATOK CHORD (FT) = 1.44000 .
- 2-D WING CLA = 0.10300 20 TAIL CLA «  0.10000 .
. COPLE = 0.02690 2-D WING CIA = 0.0 .
- 2-D WING CL = 0439000 .
- *
- DISTANCES L4
- -
. LENGTH OF FUSELAGE (FT) = 25.00000 WIDTH OF FUSELAGE (FT) = 4417000 .
. CeGe T3 TAIL QUARTER-CHORD (FT) = 14.60000 WING TO TAIL JUARTER-CAORD (FT) = 14.63000 .
. CoGe TO WING A.CoCHNROWISENLFTI = 0.11630 CuGe TO WING AeCo(VERTICAL) {FTI =  1.67000 .
. NOSE T) WING QUARTER-CHORD (FT) =  6.8400C CoGe TO WING JUARTER-CHORD (FT) =« <~0411630 .
. C.G. TO THRUST AXIS (FT} = 0.0 .
- *
Ry - LR LA -
aun L L1 L2 L) ] LI LR ]
- -
. LONGITUDINAL STABILITY DERIVATIVES .
- *
- -
® -
L3 L3
«  CL = 0.3093 CLA = 4,6080 CLOA = 1.7419  CLQ = 3.,9168  CLDE = 0.4268  CLU = 0.0 €T = 0.0 .
© (D= 0,0311 CDA = 0.1256  CJOA = 0.0 €0Q = 0.0 CODE = 0.0 CoU = 0.0 Ty = 0.0 .
= CM= 0.0 CMA =~ -0.8853  CHDA = -5.2370  CHQ =-12.4337  CHDE = -1.2830  CHMU = 0.0 CTRPM = 0.0 -
® L]
L1l L] LA sESeS BEEEI F AAES AL RS KRS X QR E S QN8 ddvh d b B
sabaant
. -
- RESPONSE TO ELEVATOR DEFLECTION -
- *
. -
* CLIN = 0.426T65  CDIN = 0.0 CHIN = -1,283038 K = 1 ACC = 0400010012 .
- *
reeres
«
e
- =
. DIMENSIONAL STABILITY DERIVATIVES :
-
s xUs= =0.02951 U = =-0.29327 MU = C.O W= 0.0 Xw = 0.08T0T W = -2.19951 =
«  Mi o= -3,12663 XND = 0.0 I0W = -0.00916 “OW = ~=0.00817 xQ = 0.0 1Q = -4.50916 *
e M3 = -4.25034 TRPM = 0.0 AIN = 0.0 TIN = —44,31254 HIN = -39.557T99 .
:.ll‘ LA AL L] - g perepiverspenrpsr PP RIT A R VTR LR LR S LA Ll bt ]
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: POLYNOMIAL COEFFICIENTS FOR THE DENOMINATIR ANOD NUMER ATOR :
e .
. Ds{5) = 1.0092 0St4) - 8.2719 Ds{3) - 3643491 asizy = 1.2502 DS(1) - 1.1769 -
: NUS(4) = 0.0 NUS(3) = -3.8581 NUS(2)] = 518.6315 NUS(1]l = 2623,830° :
: NAS(4] = =0.2023 NAS(3) = =39.6095 NAS{2) = =l.1685 NAS(1) = -1.7357 :
: NTH5{3] = «1319,5580 NTHS(2] &« ~82,6526 NTHSIY) = =A.4144 :
: NWS(4) = -44.3125 NWS(3) =-86T764.4787 NWS{(2) = -255.9103 NWS{1) = -3T73.5542 :
:-t hA LI TS Y Y tconc.tt.ttc‘co.-cto-lt-attatn»‘t‘ttctot‘:
LLL S ] (222 ] L i T2 2] sagskRne TSNS RRRE KA MY

WMAA AR RS RS AR AR N EE RN E R REERENR NN I N NI i S g T T

SOLUTION FOR U VARIATION

DENONINATOR ROOTS

ROOT{1) = ~0.01353 +4 ~0.18006

ROOT(Z) = =0.01350 4 0.18006

ROOT(3) = ~4s 08483 oy ~4e36192

ROUT{&) = —%.08683 +) 4a3a792

NATURAL FREQ DAMPING RATIO TIME FOR 172 DAMPING SETTLING TIME
UNDAMPED DAMPED
SHORT PERIOD 5,98034 436792 0.68304 Ne16949 Ve T3337
PHUGDID 0.18058 0.180C6 0.07530 50.97479 220.32431%
NUMERATOR ROOTS
ROOT(1} = 139.30842 +J 0.0

ROOT(21 = -4.88185 +J 0.0

NATURAL FREQ DaAMPING RATIO TIME FOR 1/2 DAMPING SETTLING TINF
UNDAMPED DAMPED
0.0 0.0 4.8819 Ou 14198 O.61364
Q.0 0.0 =139.,3084 ~0.10498 -D.02150

BODE PLIT INFORMATIUN

FREQUENCY AMPLITUDE RATIO PHASE ANGLE
RAD/SEC CYCLES/SEC PURE DECIBELS RAADEANS DEGREES
0.01000 0.001%9 2236426 66499036 3.13232 179.5030%
0.10000 0.01592 3193.30 70408473 3.C1880 172.96468
0.13543 0.02155 4936419 Ti.a6785 2.88477 l65.28514
0416252 0.02587 9550439 T9.60770 2451695 tes. 21071
G.18058 0.02874 14815.61 83.41639 1.56521 89%,67985
019863 0.03161 8342.88 T8.42632 0.66173 37914654
0w22572 0.03592 3762.97 T1.51061 031592 18.10136
1.00000 Da15915 T6.79 3T. 70063 ~0-00784 ~0. 44934
4.48526 Ca71385 Sab] 1289714 =0,45025 «25. TOTST
5433231 085662 3.01 9.560579 ~De61531 =35.34656
5.98034 0.95180 2.36 Tebsd28 ~0.72296 ~4l.42272
657837 1.04698 l.86 5039652 -0.92013 —4T.00162
1,47543 118975 1.33 245109 =0,94670 -54,24210
10.0%c00 Le 59155 0,57 —4.85312 ~1418940 ~68.,15785
99.99998 15.91549 0.0 ~63.6564d2 =2.16209 =123.To4ar2
999.99979 159.15494 0.00 ~108.26410 -2.99906 =171.87934

FRBRBRER ARSI R R AR R R R R EI N R PR D BN AR R RN PR R AR RN SN B

“kany LLEZE LTS Y
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LATERAL

GIVEN VALUES OF THE AIRCRAFT GEOMETRY AND OTHER PERTINENT DATA,
THIS PROGRAN PERFORNS THE FOLLOWING:

1) CALCULATE NON-DIMENSIONAL STABILITY DERIVATIVES

2) CALCULATE DINEMSIONAL STABILITY DERIVATIVES

3) FORMS THE TRANSFER FUNCTIONS« TF{S)=M(SI/0(S]

4] SOLVE FOR ROUTS OF OLS) AND NiS)

) CALCULATE NATURAL FREQUENCIES: DAMPING RATIOS, TINE TO DAWP
TO OME-HALF AMPLITUOE, AND SETTLING TIME

61 PRUDUCES INFORMATIUN NEEOED FOR SODE PLOT CONSTRUCTION

THE DERIVATION OF THE EQUATIONS UF MOTION ON WHICH THIS ANALYSIS 15
BASED WAS TAKEN FROM *OYNAMICS UF THE AIRFRAME', BUREAU OF
AERONAUTICS REPORT, AE-6l-4lls

THE ANALYSES OESCRISED ABOVE MUST MEET THE ASSUMPTIONS IMPOSED ON
THE EGQUATIONS OF MOTION WHEN THEY WERE OERIVED.
THESE ASSUMPTIONS AREl
1) THE AIRFRAME IS ASSUMED TO 8E A RIGID wJOV.
2) THE EARTH 15 ASSUMED TO 8E FIXED EN SPACE, AND, UNLESS
SPECIFICALLY STATED OTHERWISE, THE EARTH'S ATMOSPHERE 1S
ASSUMED TO BE FIXED WITH RESPECT TO THE EARTH.

3

-

THE MASS OF THE ATRPLANE 15 ASSUNED TO KEMAIN CONSTANT FOR
THE DURATION UF ANY PARTICULAR OYNAMIC AMNALYSIS.

&) THE K~I PLAME 1S ASSUMED TO BE A PLARE OF SYMRETAY.
H

THE DISTURBANCES FROM THE STEADY FLIGHT CONDITION ARE ASSUMED
TO BE SMALL ENDUGH SO THAT THE PRODUCTS ANO SQUARES OF THE
CHANGES IN VELOCITIES ARE NEGLIGIBLE LN COMPARISON WITH THE
CHANGES THEMSELVES. ALSO, THE DISTURBANCE ANGLES ARE ASSUMED
TO BE SMALL ENDUGH 50 THAT THE SINES OF THESE ANGLES MAY BE
SET EQUAL TO THE ANGLES AND THE COSINES SET EQUAL TO ONE.
PROGUCTS OF THESE ANGLES ARE ALSO APPROXIMATELY ZERO AND CAN
8E NEGLECTED. ANDy SINCE THE OISTURBANCES ARE SMALL, THE
CHANGE IN AIR DENSITY ENCOUNTERED BY THE AIRPLANE DURING ANY
OLSTURBANCE CAN BE CONSIDERED TO BE ZERD.

6) DURING THE STEADY FLIGHT CONOITIONs THE AIRPLANE 1S ASSUMED
TO BE FLYING WITH WINGS LEVEL AND ALL COMPONENTS OF VELOCITY
ZERO EXCEPT U SUB O, W SUB 0 = O BECAUSE THE STABILITY AXES
WERE CHOSEN AS THE REFEREMCE AXES.

7) THE FLON IS ASSUMED TO BE QUASI-STEAUY.

THE PERTINENT AIRPLANE CHARACTER]ISTICS ARE DEFINED AS FOLLOWS)

GCOSGM AND GSTNGM ARE THE PRODUCTS UF THE ACCELERATION DUE YO
GRAVITY {ASSUME = 32.2 FT/SEC#*2 FIR THIS ALTITUDE RANGE) AND THE

GEOMETRIC

GNPV S WN

w
w
ﬂﬂﬂnﬁﬂﬂﬁﬂﬂﬁ0(1"‘ﬂf'nﬂf\ﬂf\f‘nhﬁﬂﬁﬁﬁﬂﬂﬂﬂﬁf’ﬂﬁnhﬁﬁﬁﬂﬂﬂﬁﬂﬂﬂﬁnﬁﬁnﬂﬂﬂﬁﬁnnﬂﬂﬂ

PROGRAM

COSINE AND SINE RESPECTIVELY OF THE INITIAL FLIGHT PATH ANGLE .
GAMMA, (USUALLY ZERQ FOR LEVEL FLIGHT).

1ZZ 15 THE NOMENT OF INERTIA ABOUT THE Z AXLS IFT-LB5-SECeSEC)
IXZ 1§ THE PRODUCT OF INERTIA (FT-L85-SEC¥SEC)

IXX 1S THE MOMENT Of INERTIA ABOUT THE X AX1S (FT-LBS~SECTSEC)

HS 1S THE MASS OF THE AIRPLAME (SLUGS)

S IS THE WING AREA DF THE AIRPLANE (SQUARE FEET)

RHO 1S THE DENSITY AT THE ALTITUDE AT wHICH THE AIRPLANE IS FLYING
U 1S THE SPEED OF THE AIRCRAFT IM FEET PER SECUND

CH 1S THE WEAN AERDDYNAWIC CHORD OF THE Wine (FEET)

B 1S THE WING SPAN (FEET)

CL IS THE AIAPLANE LIFT COEFFICIENT

SA 1S THE WMING SWEEP ANGLE (POSITIVE AFT, IN RADIANS)

DIH 15 THE WING DIMEDNAL ANGLE (POSITIVE UPy IN DEGREES)

Zw 15 THE DESTANCE FROM SODY CENTERLINE TO QUARTER-CHORD POLINT OF
EXPOSED WING RUGT CHORD (POSITIVE FOR QUARTER-CHORD POINT BELOW
THE BODY CENTERLINE, FEET)

FUSVOL 1S THE VOLUME OF THE FUSELAGE (CUBIC FEET)

H 1S THE MAXIMUM BODY HEIGHT AT WING-800Y INTERSECTION {FEET)

SV 1S THE AREA OF THE VERTICAL TAIL{SQUARE FEET)

8V 1S THE SPAN OF THE VERTICAL TAIL(FEET)

R1 IS THE RADIUS OF THE FUSELAGE IN TWE VICINITY OF THE VERTICAL
TAILLFEET)

TR IS THE WING TAPER RATIO (TIP CHORD/ROOT CHORD)

I¥ IS5 THE CISTANCE FROM THE CENTER OF PRESSURE OF THE VERTICAL
TALL TO THE ALRPLANE®S X-AXIS (POSITIVE FOR VERTICAL TAIL ABOVE
THE X-AXISe FEET)

ETAV 15 THE EFFICIENCY FACTOR OF THE VERTICAL TAIL

58S 15 THE BOOY SIDE AREA OF THE FUSELAGEISQUARE FEET)

LF IS THE LENGTH OF THE FUSELAGE(FEET)

LT IS THE LENGTH FRON C.G. TO CENTER OF PRESSURE OF THE TARL. FEET
XM 1S THE DISTANCE FROM THE NOSE TD THE CeGolFEET)

WL IS THE FUSELAGE MELGHT MEASURED AT 1/6 LF FROM THE NOSELFEET)
HZ 1S THE FUSELAGE MEKGHT MEASURED AT 3784 LF FROM THE NOSE(FEET)

W 1S THE WAKIMUM WIDTH OF THE FUSELAGE(FEET)
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SAH 15 THE SWEEP ANGLE OF THE MORIZONTAL TAIL(IN RADIANS]

CLA20W IS TWO-OIMENSIONAL LIFT CURVE SLOPE OF THE WINGIPER RADEAN)
BH IS THE SPAN OF THE WORIZONTAL TAIL, FEET

SH 1S THE AREA OF THE MORIZONTAL TAIL, SQUARE FEET

TRH 1S TAPER RATIO OF THE HORIZONTAL TAIL (TIP CHORD/ROOT CHORD)

CLAZDH IS THE TWO-DIMENSIONAL LIFT CURVE SLOPE GF THE MORIZONTAL
TAIL (PER RADIAN)

BA IS THE SPAN OF AN AILERON(ON ONE SIDE), FEET
CA IS THE AILERON CHORD, FEEY
SR 15 THE AREA OF THE RUDDER, SQUARE FEET

ALPHA 15 THE ANGLE OF ATTACK AT WHICH THE AIRPLANE 15 OPERATING{ IN
RADIANS)

CO0 IS THE PARASITE DRAG OF THE AIRCRAFT

Y1 IS THE DISTAMCE FROM THE 800Y CENTERLINE TO THE INBOARD EDGE
OF THE AILERON, FEET

THE FOLLOMING CARODS DEFINE VARIABLES USED TO APPAOXIMATE FUSELAGE
VOLUME BY DIVIDING THE VOLUME INTD & PRISMOIDS.

HNOSE IS THE FUSELAGE HEIGHT IN THE MOSE REGIOM,FEET
WNOSE 1S TME FUSELAGE WIDTM IN THE NOSE REGIOM,FEET
HFCY IS THE FUSELAGE HEIGHT AT THE FRONT OF THE CAMOPY, FEET
WFCY IS THE FUSELAGE WIDYM AT THE FRONT OF THE CAMOPY, FEETY

LFCY 15 THE LENGTH ALONG THE BODY CENTERLINE FROM MQSE TO FRONT OF
CANOPY, FEET

LMH 15 THE LENGTH ALING THE BOOY CENTERLINE FROM NOSE TO POINT OF
NAXIMUM FUSELAGE HEIGNT, FEET

HBCY 15 THE FUSELAGE HEIGHT AT THE BACK OF THE CANOPY, FEET
WOLY IS THE FUSELAGE WIDTH AT THE BACK OF THE CANOPY, FEET

LBCY 15 THE LENGTH ALONG THE BODY CEMTERLINE FROM NOSE TO BACK OF
CANOPY, FEET

THE FOLLOWING CARDS 1MPLY THAT THE PROGRAM 15 EXECUTED IN COVBLE
PRECISION.

IMPLICIT REAL®B{A-H,0-L)
COMPLEX®16 P,TST
REAL#8 NS o KGALN oKL ¢ KROOT ¢ KKK 4 KD oXNg EXLy IXXs EZZ ¢ LP s MRo NPy LR oL By N8, L
LINoNINGNPHI yNPST oNS LY oNVoRY s KELF sl ToKB oM oL FCY ,LMH, LBCY
COMMON WNSPoZSPyTIZSPoTOSSPIWNP ¢iP, TI2P,TOSPoNF (21') »RRO(10) , RRN( L0
L) 4RIDC10) (RINCIO) JAMPREZ2L) yPHASEL 21} o ACC oWCYCLEC 210 (ARDBL 21 ) o PHDEG
10210 (KGALN+CL o SAsDIHy FUSVOL o IMsHe S ¢ SYyBY,RLy TRy ZV Y1 4 ETAV, 8, S8S,CL
LAYT s XM, H) tHZ oMo WP oRHO $CLA2DW y SAH BH )y SHe TRHy CLAZDH, BA 4 CAs CHy SRy ALPH

(X ¥ ¥4

[aNaKal o) LalaX el [aX NN a2 2] [2X N 2l

[aNak Kel

JALCDUs AR ARM s CYBCYBT ¢ CLAGCNB oCYP s CLPsCNPoCYR4CLR s CNR ¢ CYOR 3 CLDA 4 CN
LOA,CYDR ¢ CLOR o CNDR U o4 F o LT § o NUMER,

OIMENSION NSI5) oNPHI(S) sNPST(5)405(6),ROOTR(L0) 4ROCTIILOD4CLS) oKCL
14)0QUFLI3) o QUFZE33 JARLIZ) RRZIZ)pRILEZIRIZE2ZD4CCISI4RAE3) LCOFFT (S
1) oRIE3DoXR(IDeXTU31oCOFCI),RELZIRENEZ) ¢ RODT{L) fCOFF( 2}, KKK 2L ), KE
1¥(15)4Pi6)

READ IN PEATIMENT AIRPLANE CHARACTERISTICS

READ (1el) CLeSAPOINIZMIHeSISVeBY oRL TR IV, ETAV ¢ BoLF o LTy XM H]HZ o8
LoCLAZDM s SAM BH o SHoTRH o CLAZOH, BAeCA ¢ SRy ALPHA ¢ COG RHO, ¥ 14Uy HSy GLOSEM
LoGSINGH LXKy IXZy 1ZZoHNOS € HNOSEsHFCY o WECY o LFCY o LMH ,HOCY , WACY (L BCY

1 FORMAT (8F10.6/8F10.6/8F10.6/8F10.6/8F10.6/8F10.6)

CALCULATE EFFECTIVE ASPECT RATIO OF VERTICAL TAIL AND LIFT CURVE
SLOPE OF VERTICAL TalL

AE=l, 554aVedy/SY

IF (AE.GE.0.0,MNDeAE.LEL6.5) 6O TO 3

WRITE 13.2) AE
2 FORMAT (1Xs*VALUE OF AE = "»Gll.4,°
1UTSIDE PREFERRED RANGE OF 0.0 TO 6.57)
3 CLAVT %, 00003976P4MAES S5, 00069754 SAE S04 L0046 104 SAES 23—, 01506 J4®A
1ESAE+. 04019 TISAE +.0003T328

CLAVT=CLAVT®57.2958

USEQ TO CALCULATE CLAYT IS O

CALCULATE ASPECT RATIO OF WING ANO MERIZONFAL TAIL

AR=Be8/S
ARH=BHOBH/SH

CALCULATE THE MEAN AEROOYNARIC CMORD
CHaS/8
ESTINATE 800Y SIDE AREA USING FOUR TRAPEZODIOS

SBSu( MNOSEWHFCY I SLFCY /20 ¢ LHOHFCY ) 4L ML FCY 1720 4 (0006 Y ) S{LOCY -L i
L)/724¢(HBCY @2 . %R1)PILF-LBCY /2,

ESTIMATE FUSELAGE VOLUME USING FOUR PRISROTIDS

VAsLFCY#(2,08(HNOSE SWNOSE+HFCYORFCY ) +HFC YONG SE +HNDDE WPCY )

V2Zu (LNH-LFCY )91 2. 09 ( tFCYPHECY 0HER ) SHRNFCY 0 C Yiug)

V3= (LOCY=LAM)® (2,09 (HBC YOMBCY oHtil ) SHBUBCY o4 SHBCY )

VAs(LFLBCY 1* (2. 00 (NBLYMUBLYH{ 2.09R1 ) #{ 2.06R1 ) ) +MOCYS 2, 08N R ouBCYSZ
1.0"R1)

FUSYOLS(VLeV2evIEVa )/ 6.0

NEXT THREE CARDS DETERAMEINE WMHNETHER THE AIRPLANE IS LOW MING(WP=3,0
MID MIMG(WP=2.0)s OR HIGH WINGIWP=]l, O}

RaZu/H

w=2,0

IF (RoGELo25)WP=3.0
IF (RelTame25)iP=l.0

WRITE PERTINENT AIRPLANE CHARACTERISTICS AS OSFINRO IN TV IMETIAL
PARY OF THIS PRDGAAN

WRITE £3,4) RHOySoMSyQCOSEMMoCH, 8o 68 TGN, I XK ¢ I ME ¢ ELL ¢CL ¢ SAy OSH, 2N
Lo FUSVOL yM oSV BY AL o TR o LV ETAVSBS o LF o LT o iy H1 yH2 5 4y SAMpCLAZON. 8H, S
LHoTRH) CLAZDM 08A+ CAs SR o ALPHA ¢COO, Y § s HMDSE ¢ WNOSE

¢ FORMAT (1Xp1210°%%) 4/ o010y 9%, 110Ks"0% /1K, %%, 40K, PERTINENT AIRP
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LLANE CHARAGTERISTICSY o4SKe® 993/l Ko 189 y40K 347"} 1 45Ke" 8¢/ 41Ky *o
LEp 110K 5# 07 1K 89 , 17K *RHO =° sFL0« 693K o "WING AREA ='FL0.643X¢"N
LASS = oF1006¢3Ky *GHCOSIGAMMA) =4 FLOLOp L TR #0474 1Xe 8%51TX, "0 =
L ,F10e4 03X * CHORD 2 F104693Ks? SPAN =% FL0u 403X, 1GoS INIGANNA)
1m0 FL0e6y L7Ks #0741 Xs %% o LT Ry *IKK ®? gFLOoAe 3R * UL =t EGoheh
LXe? IZZ = eFPabsaRs®Cl® allho"=? JFLOe6 ol TR ® o/ 01K "9 417K, SA &9
LeFlOe8y 3K POLHS ¢ THe =" JFLOc6y3Xs*2W  @* sFLO. 693X, "FUSVOL o TXs *
LFLOt ol TR " %% /pLlXe ™% o LT ' mt F OBy 3Xy P 5Y" o BXe" =" o FLUL 693X, *
= Fl0a6oLTRe 8% 4/ Lo *®® 17X *TR =i ,F
TETAV = (FL0.6¢3K,* 585 10X,
(SR AT Y
1Xo 008, 17X, *HZ

v/

1= 3FL0.6¢3X, *H1* 411K, WFl
13Ks MY g IRy tut  FLOSGyINe " SAH  =*  FLO6¢IN s CLAZDW y TX, 0=
19790, /1Kot P J1TXp B4 #° (FLOCbIKy " SH* 28X, +Fl0.623R R wt,F
L1006 3K, SCLAZOH® TX o' #% sFL1006, 1 TR 9%,/ s AXe 0 ® 17K *3A ' 1F 10643
1Xe*CA 48X *5° ,F10.6r3Ky* SR = FLlOsbe3Ns "ALPHA® oBX o * =* s FLO by L7 X,y
1089,/ 1Ky 498 (LTNeCOD =2 yF10e 693K e "Y1 ? 8K ¢ a8 F10u 693K s ' HNASE=" ,F1
100693 Xe "WNASE® 8K, " oF1l0ebsl TXy '}

WRITE (3,51 HFCYGMFCY (LFCY o LMHoHBCY 4 MUCY ,LBCY
5 FORMAT (1Ko *®0 17Xy SHECY=® gF1006¢3Ks *MFCYY j 6K p? =® oFLde b9 INS*LFCY =
19 4FLOe6s I Ne? LHY JLOKe * =% sF 100 69 1T Xy JolXe 8t oL TR " HBCY=",¥10
13Xy *MBCYS y6X o0 u? JFLOubeINs"LBCY =% FLOc6 oK %% ¢/ 31X *%%,119%,
Le/odXeLZ1C**% 10l }

THE FOLLOWING READ STATEMENT ENABLES ONE TU READ IN A VALUE FOR A
PARTICULAR STABLLLTY DERIVATIVE OR GROUP OF DERIVATIVES, THERESY
OVER RIDING THE CALCULATED VALUE, BY SIMPLY PUTTING A ONE (1.0} IN
COLUMN 5 FOR CYB, 10 FOR CLBs 15 FOR CNB, 20 FOR CiLP, 25 FOR CYP,
30 FOR CNP, 35 FOR CYR, 40 FOR CLR, 43 FOR CMR, 50 FOR CYDA, 55
FOR CLDAs 60 FOR CMDA, 65 FOR CYOR, 70 FOR CLOR, OR 75 FOR CNOR,
AND THEN PLACING THE VALUES TO BE READs IN ORDER, (ONE PER CARO)
BEHIND THIS KEY CARD.

READ (146} (KEY(SI)edI=1413)
FORMAT (1515)

Ll

THE FOLLOMING CARDS CALL INDIVIDUAL SUBROUTINES WHILH COMPUTE
VALUES FOR THE NON-DIMENSIONAL STABILITY DERIVATIVES

CALL SCYB
IF IKEY{1).EQ.0) GO TO 8
READ (1,7 CVB
FORMAT (FlL0.8)
CALL SCLa
IF IKEY{2).EQ.C} GO TO 9
READ (1.T) CLE
CALL 5CI
IF (KEY(31.EQ.0) U TO 2O
READ (1,7} CNE
10 CALL SCLP
IF (KEY(A)2EQ.0) GO TO 32
READ (1,7} CLP
11 CALL SCyp
IF (REY(5).EQ.Q} GO TO 32
READ (1,72 CYP
CALL SCNP
IF (KEY(6).EQ.0) GU TO 13
READ {1,7) CNF
13 CALL SCYR
IF (KEY(T).EQ.Q) GO TO L&
READ (1,71 CYR
14 CALL SCLR
IF (KEY(8).€Q.0) 60 TO 15
READ (1+7) CLR
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15 CALL SCMR
IF (KEY{9).£Q<0) GO TO &
READ (1,7} CoR

16 CALL 5CYDA
IF (KEY(10).EQG.0} OU TU §7
READ (1,7) CVOA

17 CALL SCLDA
IF (KEV(11).EQ.0) 6O TG M
READ (1,7) CLDA

18 CALL SCNOA
IF (KEY(12).£Q.0) GO TO MW
READ (1,7) CMDA

19 CALL SCYOR
IF (KEY(13}.EQ.0) 6O T 3B
READ (1.7) CYOR

20 CALL SCLDR
IF (KEY(14).£Q.0) 60 W 2
READ (1,7} CLOR

21 CALL SCNOR
IF (KEY{15).EQ.0) 96 Yo M
READ {1:7) CNOR

22 WRITE (3,23}

23 FORMAT (LXpL2L070%) o/ Libe®™ 0 o LB L 0@ ¥ 5/ ¢ LNy ' 0% o 44K, *LATERAL SYABIL
LITY DERIVATIVES® yob. [T RCTI RS A T TERR RS S IR Nt Pl P 8 L]
1Ko #% o/ 91Ky 100, 110X,
WRITE (3524) CYBCLO,CABeEYP,ALP s CHP o CYR +CLRoCNR,CYDA 1 CLOAICHDA CY
LOR+CLOR, CNOR

26 FORMAT (1X,'% CVB = Flootlo"CLB =% FL006o 4K 'CNE =¢ gF10.bsd
LEs"CYP =0 FLO0b s o 'CLE  =*oF10obedXs'CNP 20 F10.64" 8¢ /,1K,'"
1 CYR #9oFlOebedAKo*CLR =9 P 0ab 4As"CNR =¢ L0, 6,4K CYDA =4 FO.6
LoeRe'CLOA =* pFLlOcoo b, A =% F10,67" 4/, LK% CYDR =*,F10.6,
LAK; *CLOR = JF10.bgdKe *OMBR ¢ (F R 6,59Ks " %,/ 4LXe*0' 119K 004/,
11%s 121179} /)

LCOUNT=0

LCOUNT IS A COUNTER wieem SEUBNTS MULTIPLE CALCULATIONS OF THE
CHARACTERISTIC EQUATISN,

THE READ STATENENT B840 5 Wl 1#PUT FOR THE VARIABLES EXPLAINED
BELOMW.

25 READ (1,26) KoNUMER ASC

20 FORMAY (Z134EL4.T)
IF (NURER.EQ.0) CAMLL BNIT

IF (K.EQeL} &0 TO 27
CYLN=LYOA
CLIN=CLDA
CHINSCNDA
&G YO 28
CYIN=CYDR
CLIN=CLOR
CHEIN=CNOR

2

-

CYIN, CLINy AND Chi® SWE W SUASILITY OERIVATIVES OUE TO COMRROL
SURFACE DEFLECTIONE. CVIR 18 EITHER THE PAATIAL OF CV WITH
KESPECT TO NUODER DEFLECTION GR AILERON DEFLECTION. TNE VALUE OF &
OETERMINES WHETHER IT 15 COWESMNED WITH AUODER OR ALLERON.

I1F K 1S GIVEN THE VALWE 1 PN CYIN, CLIN, AMD CWIN ARE PART IAL
OERIVATIVES WITH RESPECT TG WUDOER OEFLECTION. IF Koz THEN THE
PARTIALS ARE TAKEN WITH MESSGCT TO AILERON DEFLECTION.

MUMER DEFINES WHICHN TRMMISFER AOMCTION ME ARE INTERESTED Ny (8ETA,
PHI, PSIDe NUNER=1 GIVES VARIATIONS [N BETA, WINER=2 GiVES
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VAKIATIONS IN PHIy ANO NUMER®3 GIVES VARIATIONS IN Psl.

THUS, FOR EXAMPLE, IF Ka2 ANU NUMER=2 THE TRANSFER FUNCTION wlLl
BE VARIATION IN PMI DUE TO DEFLECTION OF THE AILERONS .

1V SHOULD BE NOTICED THAT THE PROGRAN [S SET-UP TO CALCULATE THE
OIMENSIONAL STABILITY DERIVATIVES AND THE OENOMINATOR POLYNGMIAL
CMLY ONCE} THEREFOKE, THE VALUE OF K SHOULD REMAIN CINSTANT FOR
A PARTICULAR CATA SET.

ACL 1S THE ACCURACY USED THRUUGHOUT THE PROGRAM TO COMPARE TwD
NUMBERS TO SEE IF THEY ARE SUFFICIENTLY CLUSE.

2

LCOUNT=LCOUNT ¢ 1

{F (LCOUNT.GE.2) GO TO 37

IF (K.ME.l) GO TO 3@

MRITE (3,29)

29 FORMAT C1SReIBITBY ) o/ o 15X 00 96X, 108, /, 15K "¢ ‘932X "RESPONSE TO
1 RUDDER DEFLECTION? (31X,¢ @)
eC TO 32

30 WRITE (3,31)

31 FORMAT (15X, 900°8¢) ./ 15X %% 06K, 989,/ , 15K, 08 *e 31X "RESPONSE TO
1 AILERUN DEFLECTION®¢31K,* ev)

32 WRITE 43533} CYEINJCLINGCNIN,K ¢ALC

33 FORMAT [15Xy*%*,96X," €%,/,15K,%8%,04K, /153Ke's S,0CYIN =t,F10,

LooSXo *CLIN =9,F10.6,4 CNIN 2% 0F10.648Xs"K 1412,4%,'ACC =4 ,F14.8

LobXot®2 0/, 15K, 80 ,96K, 094, /,15K,98({°®%))

CALCULATION OF DIMENSIOMAL STABILITY DERIVATIVES

A=RHOSU2 S
FaRHO®yusSeg
HeRHO*ys5 epel
O=RuOsysyes
E=RHO*USUsSen

Ar Fs My Dy E ARE JUST CONSTANTS USED TO CALCULATE THE DIMENS]ONAL
STABILITY DERIVATIVES.

YV=ASCYB/ (2.00MS)
LVeFaCLB/ (2. 001XX)
La=ysLy

NY=FSONB/ (24001222
NBwysNY
YP=F&LYP/ L4 0mS)
LP=HECLP/ (4,061 XKD
NP=He NP/ {40012 1)
YR=FSCYR/ (4o O®M5 )
LR=H=(LR/ (4. QW1 XK)
NRuHECNR/ (4.0%122)
YIN=D*CYIN/(2.00NS)
LINSESCLIN/{ 2.0%1XX1
NINSE®CNIN/(2.0%12L)

THE FOLLOWING WRITE STATEMENT GIVES THE DIMENSIONAL STASILITY
OERIVATIVES,

WRITE (3434) YV,LA,MBYPoLP NP, YR, LK MR Y INsL INSNIN

34 FORMAT (/2X4123('w 0ZXp*W ,12LX 792K " 9% 344X, " DIMENSIONAL S
LTABILITY DERIVATIVE A AL IS 1 U TLL LIV T I T LI PO IR
L= FlOuSs4Xy* LB =9,FL0.544X:* NO = Fl0.5,4X,
10 LP =", Fl0.5,4Xs* NP =%,F10.5,3X *yF10.5,
14Ke* LR =9, FlO.504%e % MR =?,F10,5, FlOs544X¢* LIN =,
LF10.554Xs* NIN = F10u5¢3Ks*®%,/,2K, o/ e2X3123(0%0) )

121Ky 080

ocnopon

nooo

EaNakaX o) [aXa¥3X sl
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oo

COEFFICIENTS FOR TRANSFER FUNCTION

OENOMINATOR COEFFICIENTS, USIS)S#84+DS(4)5003+0S(3)5a8240S(2)S
OS{1) s WHERE S REPRESENTS THE LAPLACIAN OPERATOR.

05(5) =1, 0~ 1 IXZ®IXZ) /L IXX*122)

0564 =Y Ve L { IXZOEXZ) /A IXXSILZ D100 D=L P-MR—{ i XL/ LXX)SNP«( INE/LEZ yoLR

DSEIaYVR{LPENRS (IXZ/ IXNIONP & { TRLZ TLZISLRI*NRW PoLB® | IXZ712T)%¢1.
10-YR/UI=YP/UI+NBOL (1. O~YR/UI=(IXZ/IXXI®{YPIU) }=NPOLR

US{ 2) ==NBS(LROYP/US {1 XL/ 1XX ) *LGCUSGMZUD ¢ GSINGRIUMP L | LO-TRZU) )L 8
L NP (1 0=YRAI=LIXLZ/ L2Z)9CSINGH/ U-GLOSGH/UCNREYP /U ) + VY& | NPOLR ~HA®
um

OS1{1) =LB* (NREGCASGM/ J~NPICSINGM/U HNBOIL PGS I NGALU-LR ¥6COSGR/U )

NUMERATOR COEFFICIENTS FOR SIDESLIP VARIATION, NS(4)5ee3eNS{3)See2
+NS(2)S#NSIL)

NSCA)=(VYINZUISUL.O0=(IRZ®IRZDZCAXKSIZZ )

NS(3 i Y IN/U NS =NR—AP -1 XL/ 1 2L~ XT*NO 7 IXK) SLINSL YO/ )= IXL/T 2L e (1.0
L=YRZU} I +NINSLIYP/UD O IXZZTXXD =L ). O~YRAUD )

NS{2) (Y IN/UDSILPONRA-LRONP ) oL [N®( GLOSGA/U-YPEMR/U=NP® (], 0~YRAS) ¢ (G
LSINGM/UIN(IXZ/TZ2) +NIN®IGCOSCM®T XL/ LUSTXX ) $YPOLR UL PO 1. 0=YRIU)+
1GSINGH/U}

NS(1)=(NIN/U) SLLROGLUSGM-LPSGS INGH ) #{ LINZU) #INP OGS | NGR~HR*GL OSGN )

NUMERATOR COEFFICIENTS FOR ROLLING VARIATION, NPHI(4)See3s
NPHI(3)S*02oNPHI (2) SO NPHI( L)

NPHI{O ) =L INENINS IX2/ T XX

NPHL (3)aLIN® (~YV-~NR ) *NINSLLR-IXZOYV/ 12 DLV IN/JDO{LO+IXI#NB/ IXX )

NPHIL2)=Y Vo LENCNR—NINOLR I={Y IN/U ) (L BRNR-LR®NS ) o LaO=YRAUIS{LIN®N
18-NIN®LE)

NPHI(1)={GSINGN/U) = (NINSLO-LINONB )

COEFFICIENTS FOR MUMERATOR FOR YAWING VARIATIONy NPS1(6)See3
+NPS1(3)SEO2eNPSII2ISNPSI(L)

NPSI{A)}aNIN+IXZOLIN/LZL

MPS I3 mMINSI=YV—LP) LTINS (- IXZOYV/L L4000 ) o( YINJUIS(NBeEXZ®LB/122)

NPST{2)uNIN®(YVELP-YPuLB/U )L IN®( YPENB/U—NPEYY ) + (Y IN/U] #(NPHLB—| Pe
1n8)

NPSTAL)=(GLASGM/UI* (L LN"NE-N]IN®LB)

THE FOLLOWING WRITE STATEMENT GIVES THE COEFFICIENT OF THE
NUMERATOR AND DENOMINATOR.

WRITE (3435} DS(5),08(4),DS(3§,DS(2),051 1)oNS{4)oNSI3)oNS(2)NS(L)
1.m-mul.mlu).wnnz).umun.nrsl(4).wsun.~rsuzl.nvsu 1

35 FORMAT (/2X0123(%80),/,2X,* CadZLXp ¥,/ 32K, 00, 32X, ' POLYNOMIAL CO

LEFFICIENTS FOR THE DEMONINATOR AND MUMERATOR® P32K gt WP /2K, 20, 32K,
151('-'l.32!."'.Ile."'.lZIXr"'.Ivil."'-!l.'DS(il = F10.4¢ 5X
12005040 =0 9F10.4,5K,°D8(3) ='F10 5Xe *DS(2) “1yF10.4y5%
1s(n) " oFLOebs 3Ky 80 o /52X 00,121, 02K ¢ %, 2TXy 'NS(A) =y
LFLl0.4¢5Xy *NS(3) w0 FLlO4y5Xp*NSL2) F LOo4 93Xy *NS(L ) =4,F10
Lody3X,te0,/7,2x, $121K0 P00/ g 2Ky T80 S 2TX L INPHIL &) =0 3 F100k 9 5Ke *NPH
L143) #* oF1Qehe5Ko"NPHLILI2) =0 o FL0u 45X, NPHI (1)} = FLO8y 3R, Y40, /2K
Lat80, 120Xy *89,/ 32Ky "9° 427Xy 'NPSTL4) ®*yFl0s % 5Ky INPSIL3) =*,F10.4,
13Xy *NPSI(2) =% sFL0.4¢5X, "NPST (1) =0 aFL0.493Xp 40/, 2K, 97, 121X, " 80
le/e2X4123(0%0%))

THE DO LOOP BELOM DETERMINES THE ORDER OF THE POLYNONIAL IN THE
OENOMINATOR, MO,

00 36 I=1,5
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1F (OABSIDSI 111 .GT.ACCIND=]-1
36 CONT ENUE

1F {MD.NELO} GO YO 37

CALL EXITY

IF WO = 0, THERE IS MO CHARACTERISTIC EQUATIONs THEREFORE THE
PROGRAN IS TERMINATED.

THE 3 YIF® STATEMENTS BELOW TELL US WMICHM SET OF NUMERATOR
CGEFFICIENTS TO EVALUATE OEPEMDING DN THE VALUE OF NUMER.

37 IF (NURER.EQ.1) GO TO 38
EF (NUMER.EQ.2) GO TO 41
IF (NUMER.EQ.3} GO TO 45

38 WRITE (3439}

39 FORMAT (410,13007%%% |,/ 1%, 0% 128K "%% /1Ky 087, 128K, 197 /g1 Xs " 0%,
149X, * SULUTION FOR STDESLIP VARIATLON' »68X,° o lXet® % ,49 -}
LohBX, #8070l Xo® ™"y 120X @ o/ LX, "4 ", 128X, Zol Xyt ®® 455X, *DENONIN
LATOR ROOTS® 456Ky *#% o/ pike %' e 120K, 1 0%)

THE DO LOOP BELOW UETERMINES THE ORDER OF THE POLYNOWIAL IN THE
NUMERATOR s MNe

00 40 Esle4

IF (DASSINSCII).GT.ACCIMN=]-1
40 COGNT INUE

IF (MN.NE.O) GO TO 48

CALL EXIT

4l WRITE (3,42)

42 FORMAT (TL%,1300980 ),/ 1K, %00 ,128Ks 89,/ 41Ke*9%,120K "4%¢/,1Kp00¢,
148K, ' SULUTLON FOR ROLLING VARIATION® o50K ¢ 9%, /o LKo" 9%, 48K, 300 "),
150K, *® 09/ g LN 4 s 120K, 0% §/ 91K e 4%, S5X o DENDMENA

ITOR ROUTS® p56Ks* 0%,/ L o'4* 120X,

OC 43 I=1.4

IF (UABS(NPRILT) ) oGT.ACC INmT~}

CONT ENUE

1IF (MW, ME.C)} GO TO 48

WRITE (3,44) WN

4% FORMAT (1Xy*MN=¢,13)
caLL EXLT

45 WRITE (3,46}

46 FORMAT (TL11,1300%80 ), /7, 0K, 4% (128 Ks"80,/ 51Ky 200 , 120K 207 o/ 1K, 000,
145Ky * SULUTION FOR YAWING VARIATION® ¢54Ko P4 o/ o1 X o * %% 4 43X 4291°=%) 45

L4Re 0 /o 1Kg #9981 20K, 088y /o LRy 47 s 128K, T8/ 1K % 55X "DENORINAT

1OR ROGTS® (56Xe0%%,/ 1Ky 147,128, 1%¢)

00 7 =14

IF {DASSINPSILI) JoGToACCINN=1~1

CONTINUE

IF IMR.NELO) GO TO 48

WRITE (3,44) WM

CALL EXIT

4

w

4

~

GETROT 15 & SUBROUTINE WHICH, USING GTMER SUBROUTINES, CALCULATES
ROOTS, OAMPING RATIUS, AMD WATURAL FREQUENCIES: AND THESE ARE
TRANSFERKEG TO THE MAINLINE 8Y USE OF A TCOMMON' STATERENT.

4

CAMLL GETROVEOSoMDRRIJRID)

THE FOLLOWING FOUR CARUS ADD A ZERD UENOMINATOR ROOT IF THE
TRANSFER FUNCTION 1S NOT FOR SIDESLIP.

IF {NUMER.EQ.1] GG TU 49
HO=MD+

[eX s a¥ s X aXakat [aXaXsNala¥ a¥ o)

anOno oo0O

RRO(MDI=0.8
RID{(MD)=0.0

49 WRITE (3,50) (JoRRDIJDoRIOUI) yI=l, N0}

50 FORMAT {1Xe"#% J46Ky'ROOTI®¢[14%) = * (FLOa5y*
WRITE (3,:51)

51 FORMAT (LXe980 12K, ¢ /o 1Xe 0 1208Xs %o/ sl ko' e 0300t NATURML, FR
LEQY 5 5Xs "DARPING RATIO® (4X, "TINE FOR 1/2 DAMPING® 9K, ' SETTLING TIME
1°¢18X, 8791080 3 31X, *UNDANPED OANPED® , 80X, '*' )

+d 1 F10.S0TH, 00 )

FOR DAMPING RATIOS GREATER VHMAN ONE(A MUN-OSCLLLATORY MODE) ™E
FOLLOWING FOUR CARDS PREVENT TAKING THE SQUARE ROUT JF A MEGATIVE
NUMBER WHEN CALCULATING THE DAMPED NATURAL FREQUEMCY. IF THE
DAMPING RATIOS ARE GREATER THAN OME VWEN THE DAMPED NATURAL
FAEQUENCTES REMAIN 0.0.

WOSP=0.0
wDP=0.0
1F (OABS(LSP).GT.1.00 GO TO 52
HDSP=WNSPODS QAT ( 1.0-L5P*LSPI
52 WRITE (3,530 WNSP,HDSP,LZ5F@,T1L25P,TOSSF
63 FORMAT {1Xs®®¢,18X, 0UTCH ROLL *oF9.4sF9.45F 10541 1KsFL0«Ss14X,F1
10.5025Ke " 39, /01X *¢ 4 120K, 0 %)

CALCULATION OF VALUES OF WF FOR FUTURE USE IN THE BUDE ROUTIME,
INCLUDED ARE SELECTEU VALUES OF WF(.Olyelsl.0s10,0,100.0,1000.0)
PLUS 5 VALUES AKOUND EACH NATURAL FREQUENCY (2 ABOVE, 2 BELOW, AND
THE NATURAL FREQUENMCY) TO INCREASE DATA IN THE BOOE PLOT CRITICAL
AREAS .

WFll)=,01

00 S [Ju2eb

INl=1J~1

WFLLJ)onF (IN1)%10.0
54 CCNTINUE

KWF 15 THE NUNBER OF NATURAL FREQUENCIES TO oE USED IN THE BODE
ROUTINE.

KWF =

11 AND IX ARE COUNTERS USEQ TO DETERMINE THE MAXIMUM VALUE OF Kuf
DEPENDING ON THE NUNBER OF NATURAL FREUWWENCIES IN BUTH THE
NUMERATOR AND THE OENONIMATUR DF A PARTICULAR TRAMSFER FUNCTION.

Li=0

k=0

If (1.EQ.01 GG T 56
IF (1aEQa2) GO TO 55
WFE12) =0, FouNP

WFLL 3120, T5nNP
WFC14) NP
WF(15) =L, LounP
WF{lo) a). 258uNP

1K=1

WE(9)=WNSP

WFLLU =l 1 *uNSP
WEi11)u).250uNSP

[T=l

1F (Kuf.EQ.le) GO TU 56
KwF=11



L6

con

acconn

cocoon

(s akakakaR oF s W oK s ¥ o}

fon

GETAOQT 1S USED TO FINO ROOTS OF A PARTICULAR MUMERATOR DEPENDING
ON THE VALUE OF MNUMER.

56 IF (NUMER.EQ.1) GO TO 57

1F (MUMER.EQ.2) GO TO 58

CALL GETROTINPSI oMNsRRNyRIND

&0 TD 59

CALL GETROTUNS¢MNsRRNsRINY

U TO 59

58 CALL GETROTUINPHI JMN¢RRMsRIN}

59 WRITE {(3,60)

60 FORMAT {LXe®%%,56X, "NUMERATOR ROUTS® ySTX 0%y /oLlXe "% 4128Xe" %)
WRITE (3,500 (JpRRN(JD GRINTS) o dul oMND
IF (NUNER.NE.3} GO TO &3
WRITE (3,50)

~

IF THE DAMPING RATIO HAS AN ABSOLUTE VALUE GREATER THAN ONE(A NOM-
OSCILLATORY MOOE}s THEN A DAMPED NATURAL FREQUENCY 15 NOT
CALCULATED FOR THE NUMERATOR. THEREFORE« WOSP ANO WOP ARE LEFT AS
ZERO.

#WOSP=0.0

WCP=0,0

IF (DABSIZSP).GT.1.0} GO TO 61
WOSP=WNSPROSQRT{ 1.0-ZSP*LISP)

TME TWO WRITE STATEMENTS BELON PRINT THE PcRTINENT INFORMATION FOR
OSCILLATORY MODES [N THE NUMERATOR., IF THE NATURAL FREQUENCIES
ARE PRINTED AS ZERG THE MOOE IS NON-OSCLILLATORY.

61 WMRITE (3462} WNSP,WOSP,25P,T125P, TOSSP

62 FORMAT (1Xo'#? 028X sFF .4 oFlletsINeFL042 L KsFL0uT914KsF10.5422K," 8¢
Lo/slXe®®? 28K 4 @0 )

63 WRITE (3+64)

&% FORMAT (1Xyg®®® 35X, 58("=1),35K,"%1,/,1K T, 53X,
L*80DE PLOT INFORMATION® ¢54K° 5%,/ 41K, %4 128X, v/ LKy ®% 421K,y ' FR
LEQUENLY® 26X s TAMPLITUDE RATIO® 425Ky " PHASE ANGLE® »21Xe "%/ 1Xe " %%,
115Ky *RAD/SEC® 98X *CYCLES/SEC® 514X YPURE® 410K, *UECIBEL S v 15X, *RADIA
LNS* ,8X, *OEGREES® 415X, *®¢)

THE NEXT FEW CARDS ARE A ROUTINE TO FIND MORE VALUES OF WF FOR THE
BODE PLOT ROUTINE DEPENDING ON wHETHER OR NOT THE NUMERATOR HAS
ANY OSCILLATUORY MODES. THE FREQUENCIES AMD THE VALUES OF KNF ARE
CHUSEN IN THE SAME MANNER AS THOSE UF THE OENONINATOR PREVIOUSLY
MENT I OMED

M0l AND MNL ARE USED TO PREVENT HAVING ZERQ SUBSCRIPTS WHEN
CALCULATING THE NUMERATOR AND DENOMINATOR GAINS FOR THE BAOE PLOT
SUBRUUT INES

MO1=MO+ L
1F { NUMER oNE « 1 ) MD1 »HO
MNL=MN+]
1F (1.EQ.0) GO TO 67

I1 AND IK ARE COUNTERS USED TO DETERMINE THE MAXIMUM VALUE OF KWF.

IF {11.EQ.0.ANDs IK<EQ.0) G0 TO &8
IF 111.EQel«AND. IK.EQ.D) GO TO 65
WF{17 )=, 9¢uNSP

WF(18 )=, TS®MNSP

WF{19)=uNSP

WF(20) =1, SMNSP

WF{21) =1.250WNSP
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3

T4

75

KWF=2]
60 TO o7

5 WF{12)=.9%uMSP

WF(13)a, T5PUNSP
WF(14)muNSP
HEL15hule louNSP
WE(L6)m), 25WMNSP
KuF=lé

60 7O 67
WFLT )=, FOUNSP
MFL8) =, TSNS
WF{9 ) =uNSP
WF(10) =L LONNSP
WF{11)=],25%uNSP
KMF=ll

IF (NUMER.NE.-1) GO TO 68
KGAIN=NS(MNL)/DS{mOL}

THE GAIN (KGAIN) FOR THE ROOT LICUS PLOTS IS CALCULATED FROW THE
COEFFICIENTS OF THE HIGMEST ORDER TERM IN THE DENOMINATOR AND
NUMERATOR s TFoKGAIN(S=A)(S-8)/1S-C)I5~D)y MHERE A ANU 8 ARE ROOTS
OF THE MUMERATOR ANO C AND D ARE ROUTS OF THE DENOMINATOR.

&G TO 10

1F {NUMER.NE.2) GO TO &9
KGAINaNPHI{MNL }7D5({N01)
GO YO 70
KGAIN=NPS ] (MNL}/DS{NOD1)
KKMF=KWF

THE NEXT 12 CARDS RANK THE WF'S IN ASCENOING ORDER.

NAX=WF(1)

Li=1

D0 T2 JO=2,KKNF

IF (WF (SD)oGENAXILR=JO
IF (WFLJD).GE.NAXIMNAK=WF{JD)
CONT IMUE

WSAVaWF ( KKWF )
WE{RKWF ) =WAX

WF{LK) sWSAY
KKWF=KKWF-1

IF (KKWF.EQel) 60 TO 73
60 TO Nt

BO0E IS THE SUBROUTINE WHICH CALCULATES ARPLITUOE RATIO AND PHASE
ANGLE FOR EACH WF, THE INFORMATION IS TRANSFERRED TO THME MAINLINE
BY THE VUSE OF A *COMMON® STATEMENT.

CALL BODE { D M, KNF )

MRITE (3474} (WF{1)oWCYCLECT) JAMPR (1) pARDE( 1) oPHASE(] 1o PHOEGLI )1
L1oKWF )
FORMAT {1X
LFl045513X,
MRITE (3,75}

FORMAT (1X,9%° 128K " %%/ 1Xs130(**%})
1F I NUMER o NE « 1 FRD=MO- L

G0 To 25

END

3K FLOS 6K sFL0a5¢12KoF10u296XsFL0eS 112X ¢F1TL5 20Ky
]

SUBROUTINE GETROTICUFF 1,M,RO0TR,ROOT1)

N
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GETROT IS A SUBRQUTINE WHICHM, USING OTHER SUBROUTINES, CALCULATES
ROOTS, OAMPING RATIOS, AND MATURAL FREQUENCIES, AND TMESE ARE
TRANSFERRED TO THE MALNLIME BY USE OF A *COMMON® STATEMENT.

IAPLICIT REAL®8{A-H,0-1)

COMPLEX®16 P,TST

REAL®D NS KGAINGKC yKROOT ¢ KKK ¢ KD o KNy EXZo IXXy IZ Lol P oNR s NP LK LBy NB 4L
LINGMING NPHE y NPST y NSy LY s NV KY s KT oLF LT oKB ¢ MU

CUMMON WNSP o LSPyT125P ¢TOSSP MNP ¢ ZP s TL2P o TOSP pWF (21 ) yRAD{LO) s RANI 1O
L) RIDCLO) ¢RINCIONJAMPRE 211 g PHASEC 21) ¢ ACC oWCYLLE(21) ¢ARDB( 212 ,PHOEG
1021) o KGALNsCL s SAsDIHy FUSVOL ¢ ZWoHe S»SYoBVRL s TR LV, Y1, ETAV, 8, 585,C1
LAVYT o XMy HL oH2 oW o WP o RHO ¢ CLAZOMW y SAH, BH o SHy TRH; CLAZDH s BA ¢ CA¢ CHo SRy ALPH
LASCOD AR s ARM 4 CYB +CYBT o CLB2CNS 1 CYP o CLP oCNP oCYR yCLRsCNR 9 CYDA S CLOA 4 CN
LOACYDR sCLOR o CHOR Uy LF oL T¢I s NUMER

DIMENSTON MUS(S) sNASIS) oNTHSIS) eD5(6) ROOTR{10) ,ROOT1110),L(5) yKCE
L4} +QUFLI3) yQUF2L3) JRRLE2) 4RAZ(2)yRILEZ) +RIZ(2D0CCIADIRRED),COFFILG
LIeRICIDSXREI) ¢ X14D) 4COF(I)JREAZ) oRIMEZD 4 ROOTUL) oCOFF(2) KKK 21 Dy P{
is)

THE 3 *IF STATEMENTS BELOW ODECIDE WMICH ROOQT-EXTRACTION
SUBROUTINE TO CALL DEPENDING ON THE YALUE OF M(THE QRDER OF THE
PCLYNONIALY .

IF (M.EQ.4) GO TO 3
1F (M.EQe3) GU TO 2
IF (M.EQ.2) GO TO 1

THE SUBROUTIMES SINGLE, QUAD, CUBE, ANMD FOURTH SOLVE (THE SOLUTION
IS ACHIEVED IN CLOSED FORM AND THUS REQUIRES MO ITERATIVE
PROCEDURE} FOR ROOTS OF FIRST, SECOND, THIRO, ANO FOURTH ORDER
POLYNOMIALSs RESPECTIVELY,
CALL SINGLE(COFF1,RO0TR»RODTL)

0

GC TO 4
CALL QUAD(COFFT,ROOTR ¢ ROOTE)

-

GG TO o
CALL CUBE(COFFI,ROOTR . ROQTI)

~

GO TO 4
CALL FOURTH(COFFI,KO0TRROOTL)

-

THE FOLLOWING CARDS TEST THE ROOTS OF THE PULYNOMIAL TO CHECK THE
ACCURACY OF THE ROOT SULVER SUBROUTINES. LF THE VALUE OF T57 IS
YOO LARGE A WARNING MESSAGE 1S PRINTED.

»

00 7 I=1,N

PLL)=DCMPLXCRGUTRIT) »ROOTIEIN)

ZERD=0.0

TST=0CHAPLXLCOFFL (1) ¢ZERD)

Hy=pe]

00 5 J=2.0J)

TSTaTSTHLOFFLLJI 0P| ) s8(J~1)

CONT I NUE

1F (COABS(TST)I.LE«ALC) GO TQ 7

WRITE (3560 PUIDTST

FORMAT (1X,*RO0T = ¢,2G15.8," WHEN SUBSTITUTED INTQ LTS POLYNOM
LIA FALLED TO COME WITHIN ACC OF 0.049,/,1Ks¢ THIS VALUE DIFFEKRED ¢
IROM ZERD BY *,2G1S, . THIS IMPLIES EITHER A ROUNDOFF ERROR WHEN
L TESTING THE RUOTS?:/¢L1Xs+*(ACC TUO SAALL) OR THE VALUE 0,01 USED T
10 CUMPARE WITH TEST IN SUBROUTINE FUURTHM I3 TOO LARGE.®)

T CONTINUE

w

L3

THE NEXT 25 CARUS IS A PROCEDURE WHITH POSITEIONS ROOTS WETH BOTH
REAL AMD IRAGINARY PARTS IN THE FIRST L POSITIONS AMO THE ROCTS
WITH ZEKO IRAGINARY PARTS IN THE MEXT KK POSITIUNS, FOR EXAMPLE

oOrn anconoconNo

coOnO00

1o

11

1

~

13

IF THERE ARE 4 ROOTS, TwO WITH UNLY REAL PARTS AMO TwO COMPLEX,
THE COMPLEX ROOTS WILL BE IN POSITIUMS | AND 2 AND THE REAL ROOTS
WILL BE IN PUSITIONS 3 AMD 4. Lo K¢ AND K& ARE COUNTERS USED YO
FACILITATE THIS PROCEDURE.

‘I IS A COUNTER WHICH DETERMINES THE NURMBER DF RUUTS WHICH HAVE

80TH A REAL AND AN IMAGINARY PARY.
I=n

N IS A COUNTER WHICH PREVENTS TME OROER OF THE POLYNOMIAL FRON
BEING DESTROYED.

Nol

L=l

Kool

KKk=0

D0 9 J=l4N

1F (DABS{ROOTICI)IIGTLACC) 6D TO @
I=l-1
ROOTI{K)=ROOTLILI)
ROOTRIK)=RDATRISN
K=K+]

[ ana ¥

&0 Yo 9
AGOTI{L}=ROOTI (4]
ROOTRAL)=ROOTR{J)
Leie]

CONT I NUE

IF (KK.EQ.Q} 60 TO 11
K]=K~KK

RCOTFI (N}=RQOTIIXT)
ROUTR( N}=ROOTRIKI)
NeM-L

KK=KK =1
IF (KKkEQ.Q) &0 TO 11
G0 Y0 10

AT THIS POINT THERE ARE 1 ROOTS THAT HAVE BOTH A REAL AND AN
IMAGINARY PART ANO (M~1) ROOTS WITH JUST A REAL PART,

THIS PART OF THE PROGRAM DEVERMINES THE LAAGEST REAL PART OF THE
ROOTS AND RANKS THEM FROM THE 8OTTOM IN THt I POSITIONS AVAILABLE,

RRAX=ROOQTRIL )}
Km)

1F {1.€Q.0) 60 TO 14

00 L2 J=l,1

IF (DABS{ROOTRIJ)).GCT o RMAX JE=J

1F (DABS(ROUTALI) .67« RRAXIRNAK®ROGTR ()
CONT INUE

RSAVER=ROQTAR{ 1)

RSAVEI=ROOTI(I)

ROOTR{ 1 }=ROOTRA (K }
ROOTE (1 )=ROOTI(K)

RQOTRIK)=RSAVER

ROOTL{K }=RSAVE

N=]-1

DO 13 J=l N

IF (DASSIANAX=ROOTR(J)) JLEACCILeY
CONT I NUE

RSAVER=ROQTR (N}

RSAVEI=ROOTE (N)

ROOTRCN) =ROOTRIL )
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14

15

16

17

14

ROOTI (M)aRCATI(L)
ROOTRLL)=RSAVER
ROOTI (L J=RSAVEL

THE QUTPUT FOR BOTH NUNERATOR AND OENOMINATOR 135 PRINTED IN A FORN
WMICH REQUIRES TWO OSCILLATORY MODES. IF ONE OR BOTH OF THE MOOES
ARE NON-OSCILLATORY FHEN THE FOLLOWING PROCEOURE 1S USED?
1) THE DAMFING RATIO IS CHOSEN TO BE THE SMALLER MAGNITUDE OF
THE REAL ROOTS, SINCE THIS ROOT WILL DOMINATE IN THE TINME
OOMAIM (A NEGATIVE OAMPING RATIO WOULD INDICATE AN
UNSTABLE NODE ) o
21 THE TINE TO DAMP TU 50T AND 58 OF THE ANPLITUDE ARE
CALCULATED BASED ON THE ABOVE DAMPING RATIO. THUS, FOR AN
UNSTABLE SYSTEM THESE TIMES WILL BE NEGATIVE.

THE REMAINING PORTION OF GETROT CALCULATES THE NATURAL FREQUENCIES
(MNP & WNSP), CANPING RATIOS(IP & ISP}, TINE TQO DAWP TO 172
AWPLITUDE(TLZP & TL2SP) o ANO SETTLING TIME(TOSP & TOSSP). THE
SETTLING TINE IS THE TIME TO OANP TO SK OF THE DRIGINAL ANPL ITUOE.
THE SUFFIXES P AND 5P REFER TO OSCILLATORY MOOES FOR THE NUMERATOR
OR THE DENOMINATOR DEPENOING ON THE EQUATION BEING SOLVED .

THE NATURAL FREQUENCIES, WNSP AND MNP, ARE DETERMINED 8Y A RANKING
OF TME MAGNITUDE OFf THE REAL AND IMAGINARY PARTS OF THE ROOTS,

THE LARGER MAGNITUDE REPRESENTS MNSP. [F THERE IS ONLY ONE
USCILLATORY MOODE THIS MODE [S REFERRED YO AS THE *SP* SUFFIX MOODE
AMD THE *P* SUFFIX MODE 1S PRINTED AS ZERO. WHEN GETRUT 1S USED
FOR A NUMERATOR POLYNOMIAL OR LATERAL DENCREIMATOR THE *Sp*
INFORNATION 1S PRINTED AS A NUMERATOR OR OENOMINATOR OSCILLATORY
MODE WHEN ONLY OME OSCILLATORY MODE IS PRESENT.

IF {M1.EQ.1} GO TO 18

IF (MeEQe24AND.1.EQ.0) GO TO 19

1F (MeEQe24AMNDe <21 60 VO 22

[F (M.EQn3.AND.I.€Q.0) GU TD 22

1F (MeEQe3.ANDs1.EQ.21 60 TO 27

IF (M.EQesaAND.1.EQ.0) GO TO zl

IF (Mo EQedAND.1.EQ.2) GO TO
MIDWTGINYRG!I'WIISN-RG“I(ll'm‘“"ll
WNZ=DSQRY (ROOTR{ 1} *ROQTR{ 1 }+ROOTI (L) *ROQTI(1) }
IF {WN1.GT.uN2) GO TO 15

WNSP=NNZ

NX=20

[ L gl L1

GO Tu 16

WhSP=ENL

NX=10

wNP=WNZ

IF {NX.NE.20} GO Ta 17
L5P=~RCOTR{L )/ WNSP
TOSSP={2.9957) /7 { LSPeuNSP)
T12SPu{ o 693L4T) /I ISPEUNSP)
IP==ROQATR{ 3) 7uNP

T12P={ 69314 T/ (IP*wnP)
TO5P=(2.995T 1/ (IPOWNP)

G0 7O 34
15P=-ROOTR (I )/ uNSP
TO55P=(2.995T)/ (ISP*UNSP )
T125Pa{ 693147} /7(1SPeuNSP)
LIP==ROOTR (1) /HNF
TOSP=(2.9997) /({ ZPounbP)
TIZP={69314TH/(IPewNP}
60 TO 34

WhSP=0.0

20
21

2

23

24

25
26

27

2

'=0eQ
45P=—=ROCTR{1)
P=0.0
T1Z5P=.693147/L5F
T055P=2,9957/25P
TOSP=0.0
T12P=0.0
GG TO 34
1F {DABS{ROOTR{1}1.GT.OABSIROOTRIZ)I) 60 TO 20
15P=-ROQTALIL)
1P=-RDQTRL2)
0 TO 21
LSP=—ROOTRLZ)
4P==ROQTR (L)
WNSP=0.0
MNP0, O
Ti2P=.69314T/72P
TO5P=2,9957/1P
TL25P=, 69314 T/15F
TOGSP=2,998T/ ISP
GO TO 34
WNP=0,0
1pP=0.0
T12P=0.0
TOSP=0.0
WNSPOSQRT (ROOTR (LI ®RUOTR (1140 0T E{ 1 J®ROOTI(1))
25P=—ROOTR{ ) }/WNSP
TLZSP=. 6314 T/ LSPRUNSP )
TC55P=2,995T/7{ LSP*WNSP)
G0 TO 34
RAX=ROOTRIL)
K=l
DO 2& J=1,3
1F {OABSLROGTR{JI))GTRAXIN=Y
IF (DAASIROOTR{J}) 6T « RAKIRAXSROQTR( 4)
CONT I NUE
RSAV=ROCTR{3)
ROOTR(3) =RAX
ROOTR{K)=RSAV
IF (DABSIRODTR{1]}.GTF.OABGIROOTRIZII) GO TU 25
LSP=<~ROOTRILD
IP=~ROOTR{2}
GO TUu 26
1SP«-ROOTRI2)}
4P==ROOTRIL)
WNSP=0,.0
WNP=0,0
TAZP=,69314T/1P
TO5P=2,9951/1P
T125P=,693L47/15F
TO55P=2.998T/215P
GO TO 34
WNP =0, 0
1P=~RDOTR(I}
T12P=,493147/LP
TO5P=2.9957/1P
WNSP=D5QRT{ROOTR{1)}SROOTA{1)+A0OTL{1)®AOATL{L2)
L5P=—ROOTRL ) 75NSP
T125P=, 69314 T/{L5PoMNEP)
TOSSPe2, 995T/7L LSPONNSP)
G0 TU 34
RAX=ROOTR{1)
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SUBROUT INE SLYs

IMPLICIT REAL®S{ A-H,0-2)

REAL® MS o KGAINKC o KROOT g KKKy KO gKNg EXZy 1XXe 1LZpLP MR ¢ NP LR oL By NB 4L
1IN NINGNPHE o NPSI oNS LV oNV o KY o KT 4L oL T oK oM

COMMON WNSP o LSPyT1ZSPyTOSSP MNP o 4P TLZP , TOSP, ME (21 ) RRD( LD 4 RRN( 1D
LIsRIDULO) dRINCION yAMFRI2L) ¢ PHASEC21) ¢ ACC ¢WCYLLE( 21 ) ¢ ARDB (21 \PHOEG
10213 /RGAINGCL ¢ SAyOIHy FUSYOL o IMyHe 54 SV BV oRL i TRy IV Y1 o ETAV) 545854 CL
LAVT s XMy HL s H2 28 s WP o RMO» CLAZOM s SAHy BHy SHy TRHy CLAZDH BAy CAp CHy SRy ALPH
LA CDUGAR 9 ARH » CYB,CYBT ¢ CLBCNB s CYP 3 CLP s CNPCYR yCLR oCNR » CYDALCLDAJCN
LCA,CYDR yCLDR s CNDRo U LF 5 LT, I o NUMER

CYBUSCLRCLEG, OSOTANI SAISOSINGSA D/ {3,141 5P¢ARS| AR®4, 0®=DCOSISA) 1}
CYBWO=—.000L *OABS{UIH 1 #57. 2958

LLAFUS=.1

BRA=F USVYUL &, 6566666656686066

1F (ZWel740.0) GU TO 1L

K1mle0tet856(ZW92.0/H)

&0 Ty 2

Ki=1e0=.85555%( L#2.0/H)

CYBFUSm=K | #CLAFUSEBRA/S

SHOPRm, 7243 .06%5V/ {50 1.0040C0S( SA) ) 1 4. 4%2W/H+,009%AR
PAR=GY/(2.,00R1 )

KYul,0%e 166 (PAR=-3.5)

IF (PARCLEL2.0)KY=. TS

IF (PARLGEL3.5IKYa1.0

CYBT=-KYSCLAVTSSHOPR®SY/S

CYB2CYBMSHCYBND+CYBFUSHCYBT

RETURN

€N

N

SUBROUTINE SC\8
IWPLICIT REAL®B(A-H,0=1)
REAL*8 MS)KGAINKC s KROOT ¢ KKK o KOs KNg IXZs IXKo ELZoLP o MRy NP oLR oL By NB yL
LENsMINGNPHI o NPST NS oLV oNV o KY , K1 o LF 4 LT (KB, MU
COMMUN MNSP ISP TL2SPoTOSSP MNP ¢ ZP ¢ T12PTOSP,WF (21 ) 4RRO(20) 4 RRN( 10
LIeRIV(ELO) ¢RINCLO} JAMPREZLI s PHASE 1 21) o ACCoWCYCLES21) 4ARDA{21) PHOEG
10210 g KGAINGCLoSAPDIH, FUSYOL 1 ZMyHs SoSVyBY s RL 4 TRGZV,YE, ETAV, 8, SBS,CL
LAYT g KMo ML g M2 oMo WP yRHO ¢ CLAZOW s SAtty BHy SHy TRHy CLAZOHeBA» CA9 CH o SRe ALPH
LACOUy AR pARM ) CYB LY BT o CLBCNO s CYPoCLPoCNP o CYRGCLR9CNA 4 CY0ACLOALCN
ICAGCYOR»CLOR + CNORy LI LF oL To [ s NUMER
IF (ARsGEela5+ANU.ARLELLG.) GO TO 2
WRITE (3,1) AR
1L FORMAT (1X,'VALUE OF AR = ¢,G11.4,2X¢*USED TO CALCULATE CL8 IS OUT
LSTUE PREFERRED RANGE OF 1.5 TQ 10.0%)
4 CLBUU=({=.20833~05QRT {4 0434-4,6296%(1.0052-ARI ) 1/2.3148148+.7%(1.0
1=-TRI* (Lo O~TR)*{AR-1.5}/6.5)%.0001
CLBaL=CLROD®DTHOST . 2958
CLUMWO=CLA (=1, 25 TL*#TR*,29)7CARMTR ) +.0S)
CLEN=CLBWO+(LBRND
CLEVT =~CLAVT#SVSIVaETAV/(S*B]
IF (WP.NE.1.0) GO Tu 3
OCLB=~, 00044
Ga to s
IF (WP.NE«240) GO TO &
UCLB=0.0
60 YO 5
DCLB =, 00064
CLA=CLBW+CLAYT+0CLE
RETURN

-

W

CE~NT P FWON-

ENOD

SUBROUTINE SCNB

TMPLICEY REAL*B{A-H,0-2)

REAL®8 MSyKGAINy KLy KROUT KKK ¢ KO o KNp IXZs EXXy 1ZToLP osNR ¢ NP LR 3L 5o NB oL
LTINS NINGNPHI oNPST oNSoLY o NVeKY o KT o LF 4L T XB M)

COMMUN WNSPyLSPyT125P ; TOSSPoMNP , LP o TLZP,TOSP, WF (21} o RRDT10)D o RRNL LG
L2sRIDIIO) yRINTIO} ¢AMPRI2LY yPHASEL 21) o ACC o WCYCLEL 21) 4 ARDB{21) »PHDEG
L421) oKGAINCLy SAyDIH) FUSWUL o LM eHe S¢SV eBYoRL s TRoZV, Y1, ETAV, 8, 58S,CL
LAVT o XM g HL o HZ o o WP o RHO»CLAZOM g SAHy BHy SHy TRHy CLAZOMyBAy CAy CHe SRy ALPH
1A, CO0pAR pARH s CYByCYBT oCLBICNBCYP 4LLPeCNP (LYK oCLR4CNR ¢ CYDA,CLOALCN
LOACYORyCLOR s CNORGU L Fo LTy 1 o NUMER

A=XM/LF

IF {AGEsalAND.ALE.-B) GU TO 2

MRITE (3,1) A
L FORMAT (1X+°VALUE UF XN/LF = %,Cllu%,* USED TU CALCULATE Cea 1S
LOUTSIVE PERFERRED RANGE OF 0.1 TO 0.8°)
2 X={A®.2)*%10.0

XPmE=3,0

R=LFoLF/585

IF (RuGE245.ANDRLLEL20.) GO TO &

WRITE (3,3) R
3 FORMAT (1Xs!'VALUE OF LFSLF/SBS = ?,Gll.4,* USED TU CALCULATE CN@
L IS QUYISIOE PREFERKED RANGE OF 2.5 TO 20.0*)
4 YO==, 0015609%R* &I+ 06 TS TT2ZRRE 92~ . FFIBEAORSL . 20213

YPm,3L48XPOY]

Ysl2.0+YP

YP=Y~8.0

AA=DSQRTIHL/HZ}

TF (AALGEcaBoAMDaAALE.L1.65) GO TO &

WRITE (3,5) AA
S FORMAT (1X,°VALUE OF SQRTI{HL/HZ) = *,Gllaey® USED TU CALCULATE CN
16 1S UWWTSIVUE PREFERREL RAMGE OF 0.8 TO 1.657)

& XP=AASYP
ABsH/W
IF (AB4GE«e5.ANDABJLE.2,0) GO TA 8
WRITE (3,7) aB
7 FORMAT {L1Xs'VAMLUE OF M/W = *,Gl1.4," USEU TO CALLULATE Cha iS5 QU

1TSi0t PREFERRED RANGE OF 0.5 TO 2.0%)
H YPu~| IH/WIOO{ HB%N/H} NP
\sadd
RHOL =RHO*1 0000,
MU, I4TTTORHUL$29. 23345
RN=RHO1®USLF/ {MU#,.0001 )
AC=RN*, 000001
IFf ({ACaGECD.0uAMODLACLELB0.0) GO TO 10
WRITE €(3,9) AC
9 FORMAT (1Xs*VALUE DF RN®10«6 = *4Glle4s? USED TU CALCULATE CNB I
15 OUTSIDE PRLFERRED RANGE OF 0.0 TO 80.07)

10 YP=AC/20.0

X=eUDB3IIZTYPHO I~ LLISTINYPEYPS] . 020950YPe . 446 H5T
BlwX/2.0

A==2.0%(V1-B1}

K= { X=1.0),000%

CNUm—KBOSASULFwS T. 294/ { Soa)~CYBTOLT/B

RETURN

EM

SUBROUTINE SCYP
INPLICIT REALSB(A=H,O=L)

OO NS nEWN-

N
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LAVY ¢ X o H1 M2 p 8 sl Py RHO; CLAZOW s SAH» BH o SHs TRH2 CLAZ Oty BA s CAp CH o SRo ALPH
LASCODs AR o ARH, CYB,CYBT yLLBGCN ) LYP LA P CNP sCYRCLRCNR 2 CYDASCLOACN
1DA4CYOR ;CLDR , CNDRU oL F oL Ty I s NUNER

IF (AR.GEeZa0sANDARLLECLZ2.) GO TO 2

WRITE (3¢1) AR
L FORMAT (1X,'YALUE OF AR = *¢Gll.%," USED TO CALCULATE CLR 1S OUY
1SIDE PREFERRED RANGE OF 2,0 TO 12.0%)
2 YPm=.000024T6T4*ARY ¥4+ . 00l 941 S4SARUS 3—, 046H0SZ*ARPARS (4564 04 8AR =4 O
190029942, 150 (A 32. 4) S{ TROW(1 . 12¢ {1, 0-TR} )] /4%e s

YaYP¢2.0

IF (SALGELGs0cANDeSALLEL524) GO TO 4

WRITE (3,3} SA
3 FORMAT {(1Xs'VALUE OF SA & ¢,Gll.4," USED T3 CALCULATE CLR IS OUT
ISIDE PREFERRED RANGE OF 0,0 TO D.%52& RADIANS')
4 X=100,08Y/{100.0-5A®S7.3}

CLRUCL=X/20.0

CLRW=CLRDCL™CL

CLRT==2,0wLToLY*CYBT/{428)

CLR=CLRN*CLRT

RETURN

END

SUBROUTINE SCNR

INPLICIT REAL*BL{A<H,0-L)

REAL*S M$oKGAINGRCoRROOT ¢MRK s KD o&Ny IXZy IXRy IZLoLP pNR o NP LR oL By N 4L
LINyNINGNPHE o NPSE NS o LY o NV RY KT o LFoLT KB MU

COMMON WNSP 3 Z5P s TL2SP TOSSP eWNP 2 P TL2P s TOSP e (21 ) oRADLU10) o RRNI 1O
1) yRIDUL0) RINETO)sAMPREZ LD o PHASE( 21) oACC ,HCYCLE(ZL) s ARDB(21) +PHOEG
10210 ¢ KGAINSCL » SA,OLH, FUSYOL o+ ZMoMe 54 SVeBYoRLy TR, IV, Y1 ETAV, B84 585,CL
LAVT s XM o HL ¢HZ o Wo NP pRHU ¢ CLAZDMWy SAHp BHo SHe TRM CLAZ DHgBA ¢ CAg CHyp SRe ALPH
1AsCOOs ARy ARH ¢ CYBoCYBT s CLBsCNBsCYPoCLPCNP (CYRyCLRyCNRoCYDALCLOA,CN
JCACYOR o CLUR +CNDReUsLF e LT o 1 o NURER

CNR=2 0L T8 TOCYOT/{B98)-(+330(1.0¢3,08TRISLD0/ (2042, 0%TRI*.02%( 1
1.0-1AR=640)/13,0-(1.0-TR)I/2,5)%CL*CL)

RETURN

END

SUBROUT INE SCYDA

INPLICIT REAL®S{A~H,3~L)

REAL®B M5, KGAIMeRC oRROUOT s RRK oKDy KNy IXZy IXKe IZZoLP oNHs NP s LR oL BsNB oL
LINGNINGNPHIJNPST NS LV oNVeKY o KEsLFoLT oKB oMY

COMMON WNSP o LSPy T125P TOSSK JiNP s 1Py T12P . TOSP,WF ( 21) sRRO( 10} RRNI 1O
1) oRIDUL0) yRINTLOD ¢ AMPRIZ1) oPHASEL 21} ACC oMCYCLE(2L) yARDB 211 ,PHOEG
14210 o KGAIMICLoSAGDIHy FUSYOL s ZieHs SoSVoBY oRL o TRy IV Y¥E) ETAV, 8y 58S, 0L
LAVY XM yHL gHZ oW o WPy RHG ¢ CLAZ DMy SAH ¢ BHy SH» TRHe CLAZOMH 8A9 CAy CHe SRy ALPH
LAGCUU ARy ARH ¢ CYB o CYBT oCLB o CNG yCYP o LLPyCNPyCYR¢CLRpCNR 9 CYDALCLOALCN
LOA,CYOR yCLDA ¢ CNDR UL F ¢ LT ¢ 1 e NURER

CYOAu0.C

RETURN

tND

SUBROUT INE SCLDA

IPPLICLIT REALSS{A-H,U-L)

REAL®S MSoKGAINJKL oKROOT g KKK ¢KDoKNg IXZo IXKs ILZoLP2sNRINP S LR sL 8o N oL
LINGNINGNPHI ¢NPST oNSoLVeNY o KY oK1 LF LT oKid y U

CGMMON WNSPoZSPoT125P, TOSSP NP s 2P, TLZPTOSP,wF {21),RRO( 101 (RRN( 1O
LIoRIDIL0Y ¢RINLLIOY JAMPRI21) ¢PHASEL21) o ACC oWCYLLE(21) ARDB(21) +PHUEG
1422 ) ¢ KGAINSCLsSASOLN, FUSYOL »ZMoMaS oSV BV sRLaTRo LV Yo ETAV, By SBS,CL

~NO W W

LAVT ; KMgHL g H2 ot s WP ¢ RHU 2 CLAZON s SAHy BH ¢ SHe TRH CLAZDHo BA ¢ CAp CHy SRy ALPH
1A:CUO s ARy AllH o CYB o LYBT g CLBsCMB o CYP o CLPoCNP s CYRCLR(CNR y YDA CLDA, N
10A,CYDRyCLOR ¢ CNORIUSLF LT+ [ s NURER
IF |ARGGE a4e0sANDsARLESLZ40) GU TO 2
WRITE (3,1} AR
1 FORMAT {1No"VALUE OF AR = ¢,Cll.4y*
LUTSIOE PREFERRED RANGE OF 4.0 TO 12.90%)
2 K=0
P=Y{e2,0/8
3 CLDABT=S1.1T02 %P 028238, 294%PT445] o L42SPESH-ba s, USSP * 452241 . TIT
LOPERL=T 0. 25490PF 43410, 501 VPSP, 4080454P +,000011 9225
CLOAAT®=2,00330P %454, 15530PES4¢5, 269 328P88 3=, 56T23I5%P P+ 1 TOIN 1P
1.000227237
IF (AR GV 06000 MND.ARLT .10.0) &0 TD 4
1F (ARWLEL6.0)CLOAOTHCLDABT
1F (AR+GE o 10.0)CLOADT=CLDAAT
Go Tu &
CLDAQV=CLDABT+(CLDAAT ~CLOABT) ${AR~0:0)/4.0
IF (KaEQ.1) GO TG &
CLDALT=CLDAQY
P=(YieBA)®2,0/8
KaKel
60 10 3
CLOAOT=CLOACT-CLOALT
R=CA/CH
I1F {ReGE.Oa0.AND.R.LE.. 4} GO TD &
MRITE (3,70 R
FORMAT (1X,*VALUE OF CAZCH ® ®4Gll.4," USED YO CALLULATE CiDA 1S
1 OUTSIOE PREFERRED RANGE OF 0.0 TO 0.4°)
8 Tmm65,10626R%S4+50, B22 TORE*I-15, TOLTHRA+ 3, 533838R¢, 000043467
CLOA=CLOAQY®T
RETURN
END

USED TU CALCULATE CLDA 15 0O

we

L3

~

SUBROUTINE SCHDA

IPLICIT REAL®BIA—M,0-1)

REAL®S MSoKGAIN¢KC pKROOT y KKKy Ko KNy T XZp LXX o LZZoL P NRINP LR oL By NB oL
LINgNINg NPHT yMPST NS LY 9NV KY 4 K14 LF oL T K8 MU

COMMON WNSP 4 L5PoT125P, TOSSP ¢iNP o P, T12P ,TOSP,WF (21} 5RRD{10} ¢ RRNT 10
11 oRIDEL10) yRINCLO P ¢AMPRE21 ) o PHASEL Z1) ¢ ACCoWCYCLE( 21} ,ARGB(21) ,PHOEG
L1(21) oKGAIN¢CLy SA2DIHy FUSVUL pZWyHy S¢SVeBYRLoTRe 2V, VI3 ETAVe By 585,CL
LAVY ¢ XMyH] gH2 oMo WP pRHO y CLA2 Dl g SAH BH ¢ SMy TRH, CLAZDHo BAs CAg CHe SRy ALPH
LALCOU AR ¢ ARH » CYBoCYBT 4 CLBy CNBoLYP ,CLPyCNPyCYR,CLR9CNR ¢ CYDAJCLDARCN
1CAsCYDRICLOR yCNOR UL F 5 LTy L s NUMER

RaY]®2,0/8

1F (ARLGEL340.AND.ARLLELB.T) GO TO 2

WRITE (3410 AR
1 FORMAT (1X¢'VALUE OF AR = *,Glla4, USED TO CALCULATE CMDA 1S QU
LTSID: PREFERRED RANGE OF 3.0 TO 8.0¢)

IF (AReLT43.0) GU TII 3

IF (AR<GE.3.0.AND,ARCLE«%.0) GU YO 4

IF (ARGT a%eUcAND AR LT.06.0) GO TO S

IF (AR.GTe6.0.ANDLAR.LE.8.0) GO TO &

EFLme, 110526%R*R+,013893%A~, 146355

EF2m= o191 365%R* 430, 14 T2H4MR*R -, 00039296%R- L1904

GO 10 7
EFlu-,36

EF2=- ,0809976%R:
G0 Ta 7
AFl==.30

BF) =, 0538037*R**3—,133855¢R*MR+,00627854%R=. 262321
EF1sAFle(AR-3,0)*(BFL~AF1)

~

-

=« 0O&GLL09PRIR+, 041 F05I0R -, 284843

>
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SAMPLE OUTPUT
Povepy ooy
= .
L] PERTINENT AIRPLANE CHARACTERISTICS *
- *
- *
- RHO = 0.002050 WING AREA =174.000000 MASS = 82,300000 G*COS (GAMMA) = 32.200000 *
» U = 219,0000 CHORD = 4,056266 SPAN = 35,8300 GSSIN(GAMMA} = 0.0 .
- IXX = 948.0000 Xz - 0.0 1ZZ =1967.0000 CL = 0.307000 .
- SA = 0.0 OlH = 1.730000 P4 = ~1.835000 FUSYOL =236.013974 L
- H =  4.850000 SvY = 18.570000 34 = 5.750000 R1 =  0.730000 -
* TR = 0.700000 v = 2,820000 ETAV = 0,850000 sas = 74.815850 *
* LF = 25,000000 LT = 14,800000 XM = 7.000000 HL = 4.,800000 »*
- H2 = 1.800000 [ = 4.020000 SAH = 0,0 CLAZDW = 5,900000 -
* BH = 11.5600000 SH = 38.710000 TRH = 0.660000 CLA20H =  5.730000 *
- BA = 8.900000 CA = 0.750000 SR =  6.950000 ALPHA = 0.0 .
- CDO = 0,027900 vl = 84340000 HNOSE= 2.700000 WNOSE = 2.800000 *
* HFCY=  3.500000 WFCY = 3,600000 LFCY =  3,120000 L =  6.410000 .
» HBCY= 2,9Q00000 uBCY = 3,100000 L8CY = 12,830000 *
L L
-kl
SRRN AnEe
* *
* LATERAL STABILITY OERIVATIVES *
= L]
- .
- *
= (Cvd = -0.308006 cL8 = =0.089010 CN8 = 0.064553 CYpP = -0,037333 CLP = —0.4T70774 CNP = =0.029229 =
* CYR = 0,210292 CLR = 0,095876 CANR = ~0.099236 CYDA = 0.0 CLDOA = 0.177230 CNDA = =~0,016725 =
® (YOR = 0.187369 CLOR = 04014747 CNDR ==0,065786 *
- -
- ey
e

* *

* RESPONSE TO RUDDER DEFLECTIUN *

L3 -

& -

* CYIN = 0.187369 CLIN = 0.014747 CNIN = ~0.065786 K =1 ACC = 0.00010000 *

L *

SN KK SRS AT
Lok L] " Lo bl

*
- DIMENSIONAL STABILITY OERIVATIVES
L]
] YV = -0.14618 L8 = -28,77650 NB = 10.05814 ¥YP = ~0,31741 LP = ~12.45045 NP =  -0,37255
* YR = 1.78795 LR = 2053562 NR = —1.26487 YIN = 19.47414 LIN = 4.T67159 NIN = -10.25025
»

LA Lot oL

L B X N R R J



L0}

" LR L] L 1 FELL ] FPTECTPTP RS R R R AR A PR R SRR R R LR LR R L LR REE DR LR E SRR LR SRR 2222 EE ] )
L3 .
. POLYNOMIAL COEFFICLENTS FOR THE DENOMINATOR AND NUMERATOR »
L] )
- *
. 0s{5) - 1.0000 DS(4) . 13,8615 0S(3) = 28.6321 0st2) = 141.4946 DEYRY = 1.6019 *
. -
* NS (4) - 0.0889 NS(™) - 11.3793 NS(C2) = 130.5543 NS{(1) = ~249248 -
- -
L] NPHI(4) = 4, 7676 NPHI(3) = =-21.8223 NPHI{(2) = ~248.8831 NPHI(1) = 0.0 -
- -
. NPSI(4) = =10,25%03 NPSI(3) = ~130.0004 NPSI(2Z2) = -6.46T6 NPSI{1) = <~36.3188 *
- -

L 2t Lk L] L 2 B Ed RS RN SEE S AR AR N SRR &
sasens e eny e R nnn L Tt
* .
E »
- SOLUTION FOR SIDESLIP VARIATION .
. .
- ]
- .
* DENOMINATOR ROQTS .
- -
* ROOT(1) = =0.68T72 +J -3.29297 L
- ROOT(2) = ~0.68772 +J 3.29297 -
. ROOT(3) = 12,6747l +J 0.0 -
. ROOT(4) =  =0.01135 +J 0.0 .
. ]
] .
* NATURAL FREQ DAMPING RATIO TIME FOR 1/2 DAMPING SETTLING TIME ”
» UNDAMPED  DAMPED .
» DUTCH ROLL 343640 3.2930 0420644 1.00789 435597 *
. .
L] NUMERATOR ROOTS L
- *
. ROOT(1) & -12,76698 +J4 0.0 .
* ROOT(2) = -115.22309 +J 0.0 .
. ROOTI3) = 0.02244 +J 0.0 .
. -
. -
e BODE PLOT INFORMATION -
. L]
. FREQUENCY AMPLITUDE RATIO PHASE ANGLE »
- RAD/SEC CYCLES/SEC PURE OECIBELS RADIANS DEGREES -
- 0,01000 0.00159 1.50 3.54993 1.99879 114452220 -
. 0.10000 0.,01592 0.94 ~0.49735 0.32221 18.46137 L]
- 1,00000 0.15915 1.01 0406567 -0.,09191 ~5426598 -
L] 2452301 0.4015% 1.73 4, 77723 ~0.58051 -33,26095 *
- 3.02761 Oe48186 226 6498719 ~1.06200 ~-60. 84799 .
L] 3.36402 0+53540 2426 109669 -1.53733 -88.08257 *
” 3. 70042 Qe S6894 1.86 5.41050 -1.97265 ~113.02440 .
L 4.20502 0+66925 1.22 L. 70727 ~2436648 ~135.58929 -
. 10400000 1.59155 0e12 ~18.69283 -2.90905 =166 6T604 L
L] 99.99998 15.91549% 0.00 =57.33840 -2.41558 -138.,40248 L4
. 99999979 159.15494 0.00 -80.96231 «=1.68440 -96.50884 *
. ]
S8 SR NN L L L L] L2 E L ol
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11+106M1, KCOOE )

INPLICIT REALS4IN)

OIMENSLON P(LO)yNG(101,K(10),0UT(200) ,0UTPUT(200),T1200),RO0TR(10}
1,R00T1(10),SAVE( 2001

COMMON TOEL. THAX

1CODE s

IF {1F.GT o5, 0R.1FaLT.0) RETURN

GAINOG=1. /ANP

DETERMINE THAX

SMALL*1.E&

oC L I=1,106m
ABSR=ABS{ROOTRIED}

IF (ABSR.EQ.0.} GO TO 2

IF (A3SR.LT.SMALLISMALL=ABSR
CONTINVE

THAX=6./SMALL

GO TO (203040901 4), IF

CALL TYRELQUTPUT T+ 10 +NGs INGyROOTR ROOT I + 10GH1 4 GA TNDG o 1CO0E }
RETURN

10GM1=10GHL+1

ROOTR{10GML ) =0,

ROUTTI(10GNL}=0.

CALL TYNECQUTPUT oTs E09NGs INGs ROOTR¢ROOT | o IOGHL s GATNDG s ICODE }
RETURN

[OGM1=10GRL+1

ROOTR( IOGAL p=0 001

ROOTI(10GML) =0,

10GML = 10GML &1

ROOTR{ IDGML ) =-. 001

ROOYI( 1OGM] k=0,

CALL TYME(QUTPUT 4T+ 134 NGs INGs ROOT R4 ROOT] s 1DGM1 + GAINDG ¢ 1CODE )
RETURN

10GHL=IDGNL+1

ROQTR( 10GM) b=0.0

RCOTI{10GM1) =0.0

GAINDG=GA INOG*PT | ME

CALL TYME(SAVE:T,104NG s ING+ROOTRs ROOT 1410641 ¢ GAINDG+ 1 CODE)
1F (1CODE.NELO) GO TO 8
MTINESPTINE/TOEL+0.5

If (MTIME.€Q.0) GO TO &

00 5 [«l,MTINE
QUTPUT(I)=SAVE(T)

IPL=MTINE+L

00 7 i=1Pl,i0

OUTPUT (1) »SAVE(I I-SAVE( 1-MT INE)
RETURN

IsRTIME/TOEL*«5

RTINE=IOTDEL

10GM1 =1DGML+1

ROOTR(10GMY )=,001

ROOTI{ IDGM1)=0.0

10GML= IDGHL +L

AQOTR{ 10GM]1 1 =-,001

ROOTI( I1DGM] ) =0.0
GATNOGaGATNDGRT I ME

CALL TYME(SAVE, T, [U,NG, ING,ROOTR, ROQTL, 10GM1 ¢ GAINDG, ICOOE)
IF (1CODELNEWO) GD TO 13
MTIME=RTIME/ TOEL+0.5

IF (MTIMELEQ.Q) GO TO 11

UC 10 i=:l MTINF
QUTPUT(I)=SAVE(I)

1PL=NTINF#)

aca oo

]

12
13
14

-

w N

>

w

o

0C 12 I=1rL, 10

OUTPUT LI D uSAVE( [ )-SAVE( I-NT Imt)
RETURN

10GM1=E0GML+1

RCOTAL LOGML ) =0

ROOTI{ 1OGML ) =u

10GM]1 = IDGML +L

ROOTR{ IOGA) b=0,

ROOT{ { IDGML ) =4

CALL TYRE(QUTPUT T4 10, NGy ING,ADOTR,; ROGTE 5 10GML ¢ GAINOG 5 ICODE )
RETURN

€m0

SUBROUT INE TYME(QUTPUT , Ty [I04NGy INGy ROOTR s ROOT I, IDGHL s GAINDG, ICODED
IMPLICIY CONPLEX®B{C.K) +REALS4IN)

COMPLEX®S P, $,0UT,0UT1

DIMENSION PU{10)oNGI10) s k{103, OUTI2001,0UTPUTE200]14T1200) +ROOTRILO]
1yROOTLLLOD,TTEST(16)

COMMON TDEL » THAX

OATA TTEST/o001¢0002%59200535400194025040%504150250¢5510p259544104425
12450.,100.7

CHECK FU BAD ENTRY
1F (1DGML.LT.ING) GO TO 10
CHECK FOR MULTIPLE ROOTS

LA L I=l,IDGML
ARFL=ROOTR(114.001

RAM1L =ROOTRLI 1-.001
RIPL=ROAVI(1}+.001
RIML=ROOTL(1)-.00L

0G 1 J=1.10GM1

If (1.EQsd) G0 TO L
RRI=ROOTRUJ}

RIJ=ROCTILJ)

IF (RRML.LTRRICAND RRPL.GT ARRIANDRIML LT RIJANDRIPL.GT.RIND €
10 Ta 9

CONTINUE

1CODE =0

TOEL=THAX/200

00 2 I=1,16

1F (TDEL.LT.TTEST(IN) GO TO 3
CONT I NUE

1=l6

TOEL=TTEST(L)

00 4 [=1,10GM1
PUI)=CMPLXIROOTALT) LROOTI( 1D}

DETERMINE THE K'S

00 & J=1,IDGML

S=P(J)

CALL CPVALIKNUM, S3NGe INGY
Kinle

00 5 L=1,I0GNM]

IF (L.EQ.d) GO TO S
KJoKS/{S-PIL MY

CONTINUE

i J)=KISKNIN/GAINDG
CONTINUE
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DEVERMINE THE TIME RESPCNSE

10=0

Ti==TOEL

10=10+1

OUTL=104¢0e0

Tl=Ti+TOEL

00 & J=1,106H4]

IF (ROUTRIL)*TL.LT.~100.) GO TO &
OUTL=0UT14K{JISCEXP(TLSP(J))
CONT I NUE

OUTPUT{1O}=REALIOUTL)
UNREAL=ALMAGIOUTL)

I1F (ADSIUNREM ) .6T4+001) 1CODE=L
TilQ)=TL

1F {T1.LY,.TMAX) GO VO T

RETURN

SUBROUT INE CPVAL (RES. ARG+ Xy HOINX)
CONPLEX®S RES, ARG
OIMENSION Xi20]
RES={0440¢)
J=10IAX

IF (4} 3,3,2
RES=RESCARGS X{J)
J=y=1

o0 10 1

RETURN

€N

SAMPLE OUTPUT

THE COEFFICIENTS OF THE NUMERATIR

NGill= 2620.3518066
NG(2}= TR THLASSL
NG(3)= ~58.T7695923
Hele)= ~6+2450991

THE RDOTS OF THE DENORINATOR

ROOT (1= “0.0135%00 + J
ROOT(2) = ~0-0135900 ¢ J
ROOT (3= ~4. 0771399 + J
ROOT{41= ~4.0T71599 ¢ J
ROOT{5)= 0.0 +J

HOARNCRMP WU N~

-

THE FORCING FUNCTION INDICATOR ([F) =

THIS IMPLIES THAT A STEP

Timg

0.0

2, 5000000

5.0000000

7.5000000
10.0332000
1245322000
15. 0000000
17.5000000
20. 0000000
22.5322000
25. 0900000
27.5000000
30. 0000000
32.5022000
35.0200000
37.5000000
40. 0000000
42.5000000
45.0020000
47.5002000
50. 0000000

ANPLITUOE~

oTrUT

0.0

2.957916)
39.2050629
80.7Z92175
A23.67TT4T750
165.1146088
191.7606049
201.292236)
192.98670%
169,6253052
136.724075)3
101.2853241
703430634
49.5980072
42.4001617
49.2545013
67.9096069
93.3751092
1Z1.913467¢
146.1475458
162.3142743

-0.1801000
0. 1801 000

~4a36872986
4. 3687296
0.0

i

INPUT WAS USED.
0.05%00000



